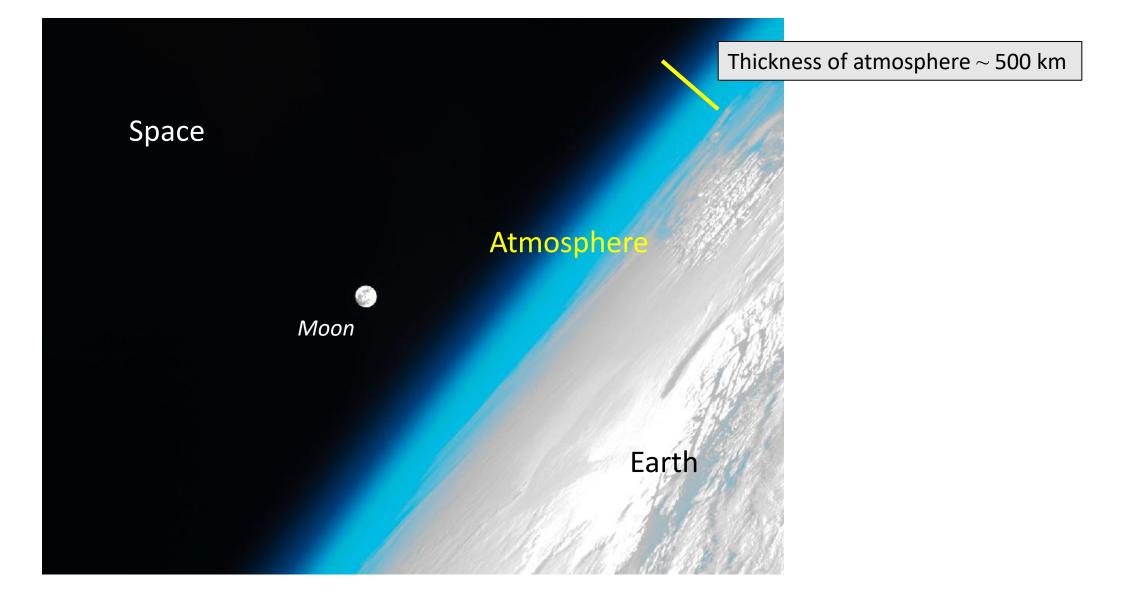
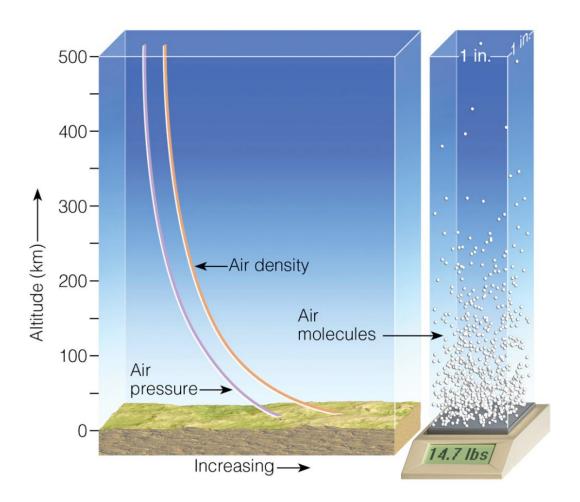
METR/ENVS 113

Lecture 1: Atmospheric Structure & Composition


SJSU Fall Semester 2020 Module 1: The Natural, Unpolluted Atmosphere Frank R. Freedman (Course Instructor)

Outline


- Atmospheric Structure
 - Pressure, Density and Temperature
 - Atmospheric Layers
- Atmospheric Composition
 - Gases in the Earth's Atmosphere by Percent
- Related Topics
 - The Earth's Atmosphere vs. Other Planets
 - The Upper Atmosphere: Auroras
 - The Life Cycle
 - Human Respiration

Atmospheric Structure

The Atmosphere Viewed from Space

Density and Pressure

KEY POINTS

• Air density: the mass of air per volume. At the surface, air density ~ 1.2 kg/m³.

• Air pressure: the weight of the overlying atmosphere per surface area. At the surface, air pressure ~ 14.7 lbs/in².

• Density and pressure are highest in the lower atmosphere, and decrease rapidly with height through the upper atmosphere.

• About 50% of mass in lowest 5 km (10%) of atmosphere.

14.7 pounds per square-inch of air pressure (typical value at the surface)

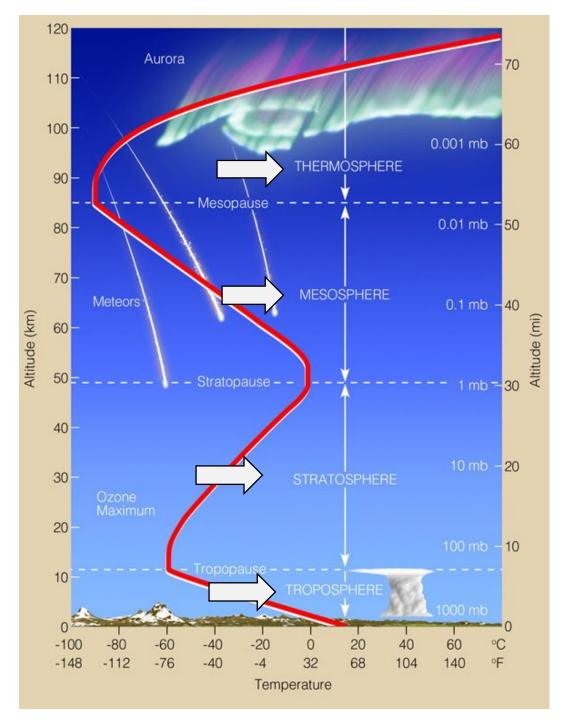
Temperature

KEY POINTS

- Air temperature is the measure of the amount of kinetic energy or how fast air molecules or particles are moving around.
- Units =Celsius, Fahrenheit, Kelvin
- Kelvin is the absolute unit (zero molecular motion at 0 deg K)

Atmospheric Layers

MESOSPHERE AND THERMOSPHERE ("upper atmosphere")


- Not much air pollution importance
- Interesting phenomena: auroras, meteors

STRATOSPHERE

- Temperature increases with height ("temperature inversion")
- where "ozone layer" is

TROPOSPHERE

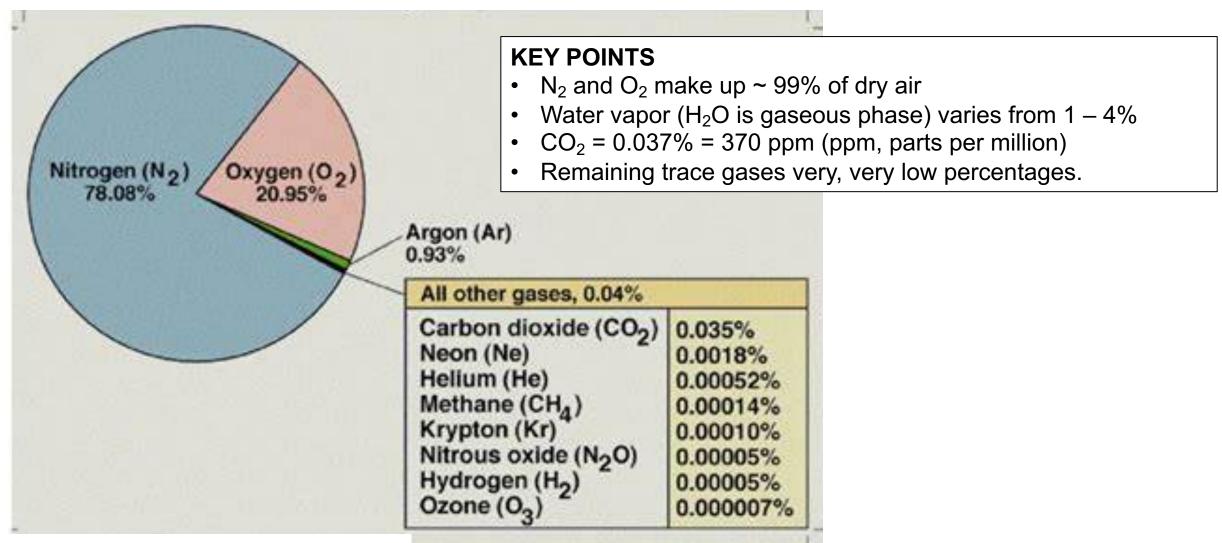
- Temperature decreases with height
- Where weather and climate patterns exist.
- Focus of air pollution topics in this class

Atmospheric Composition

What is atmosphere comprised of?

Gases

- Chemical compounds in gaseous phase
- Atmosphere is a mixture of various gases
- Includes water vapor

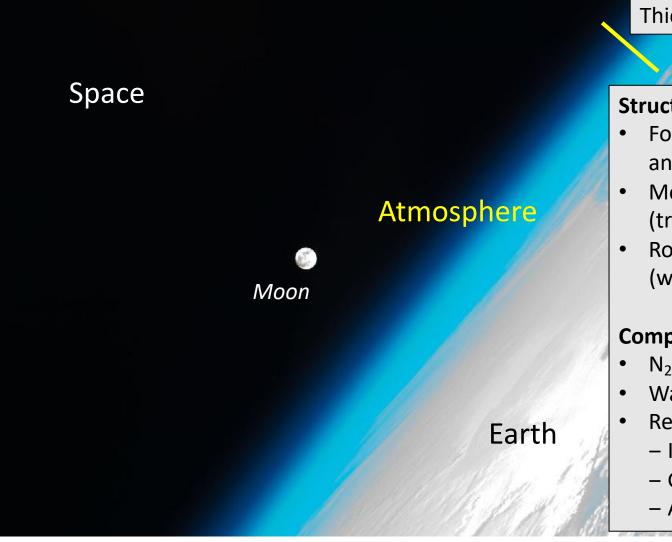

Hydrometeors

- Water in liquid or solid phase
- Clouds (ice and liquid), haze, rain, snow, hail

Aerosols

- Suspended solid particles, liquid or solid.
- Dust, smoke & various other species
- Very small in size.

Composition of Atmosphere: Gases, Dry Air*



* "Dry Air" - excluding water vapor.

Composition of Atmosphere: Further Details

Chemical Species	Concentration	Source	
N ₂	78.08%	volcanic, biogenic	Nitrogen (N ₂) and Oxygen (O ₂): 99% of Dry Atmosphere
02	20.95%	biogenic	Water Vapor (H ₂ O): $1 - 4\%$
H ₂ O (gas)	up to 4% (avg ~2.5%)	volcanic, evaporation	
Ar	0.93%	radiogenic	Carbon Dioxide (CO ₂) – Greenhouse Gas (GHG)
CO ₂	0.037% (370 ppm _v)	volcanic, biogenic, anthropogenic	
Ne	18 ppm _v	volcanic (possibly)	Ar, Ne, He, Kr – "Inert Gases" (non-reactive)
He	5.2 ppm _v	radiogenic	
Kr	1 ppm _v	radiogenic	
со	50 – 200 ppm _v	biogenic, anthropogenic, photochemical	 Carbon Monoxide (CO) – From combustion, air pollutant
CH4	1.7 ppm _v	biogenic, anthropogenic	\longrightarrow Methane (CH ₄) – Strong GHG
NMHC	5–20 ppb _v	biogenic, anthropogenic, photochemical	"Non-Methane" Hydrocarbons (NMHC); a class of air pollutants
CH ₂ O	0.1 ppb _v	photochemical	
N ₂ O	310 ppb _v	biogenic, anthropogenic	
NH ₃	0 – 0.5 ppb _v	biogenic, anthropogenic	Ammonia (NH ₃) – An air pollutant, industry & agriculture
NOx	0 – 0.5 ppb _v	biogenic, anthropogenic, lightning	→ Nitrogen Oxides (NO _x) – From combustion, an air pollutant
ocs	0.5 ppb _v	volcanic, biogenic, anthropogenic	
H ₂ S	0-0.5 ppb _v	biogenic, anthropogenic	Hydrogen Sulfide (H ₂ S) – An air pollutant, rotten egg smell
SO ₂	0.01 – 1 ppb _v	volcanic, anthropogenic, photochemical	 Sulfur Dioxide (SO₂) – From coal combustion, an air pollutant
DMS	$0.01 - 0.1 \text{ ppb}_{v}$	biogenic	

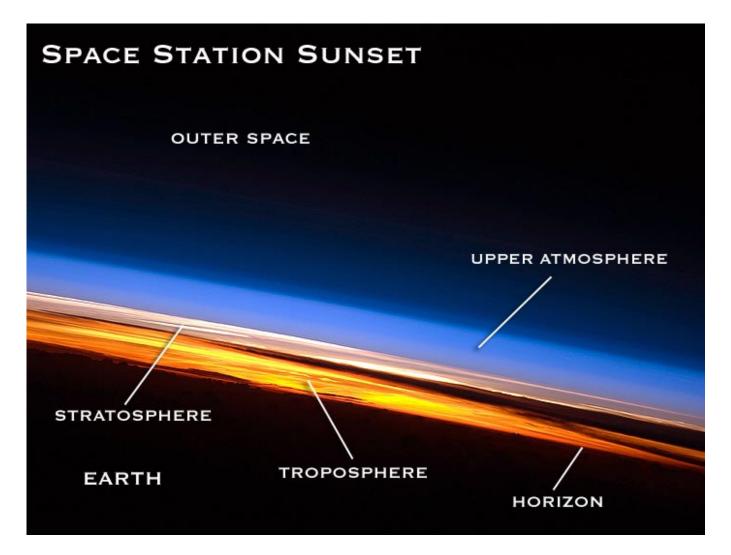
Summary

Thickness of atmosphere ~ 500 km

Structure

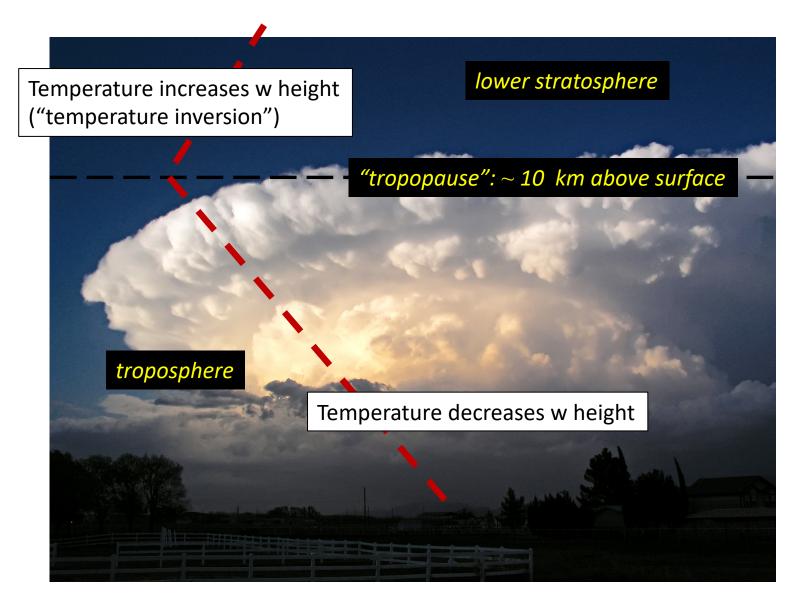
- Four layers: troposphere, stratosphere, mesosphere and thermosphere.
- Most of the mass is within the lowest 20 km (troposphere and stratosphere)
- Roughly half within lowest 5 km (within the "troposphere")

Composition

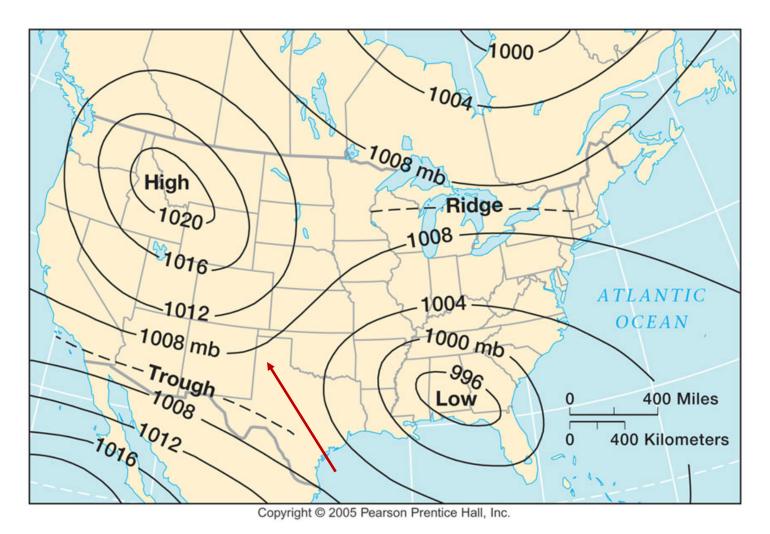

- N_2 and O_2 : ~ 99% of dry gaseous composition
- Water vapor $\sim 1 4\%$
- Remaining: "Trace Gases"
 - Inert Gases (e.g. Ar, Ne, Kr)
 - GHGs: Carbon Dioxide (CO₂) & Methane (CH₄)
 - Air Pollutants: e.g. SO₂, NO_x, CO, NH₃

Further Reading ...

- <u>https://www.space.com/17683-earth-atmosphere.html</u>
- <u>https://globalchange.umich.edu/globalchange1/current/lectures/Perry_Samson_lectures/evolution_atm/</u>


Related Topics

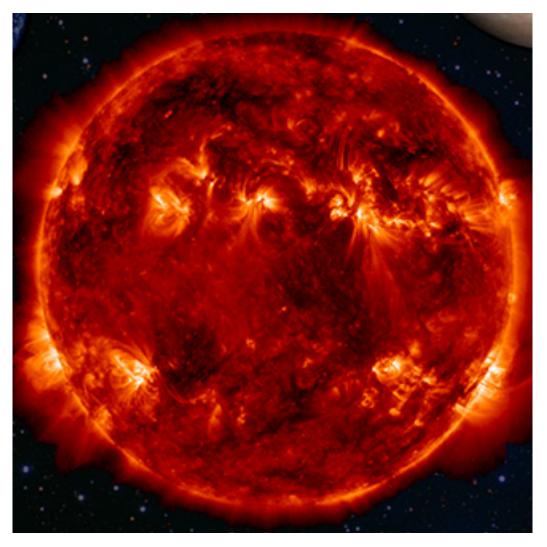
Atmospheric Layers: Viewed from Space at Sunset


https://earthobservatory.nasa.gov/images/44267/sunset-from-the-international-space-station

The Troposphere

cumulus nimbus cloud (thunderstorm)

Atmospheric Pressure: Weather Maps



Isobars

- Lines of equal surface air pressure
- Helps identify weather systems.
- Low Pressure: Stormy weather
- <u>High Pressure</u>: Clear, non-stormy
- Air pollution episodes often associated with high pressure systems

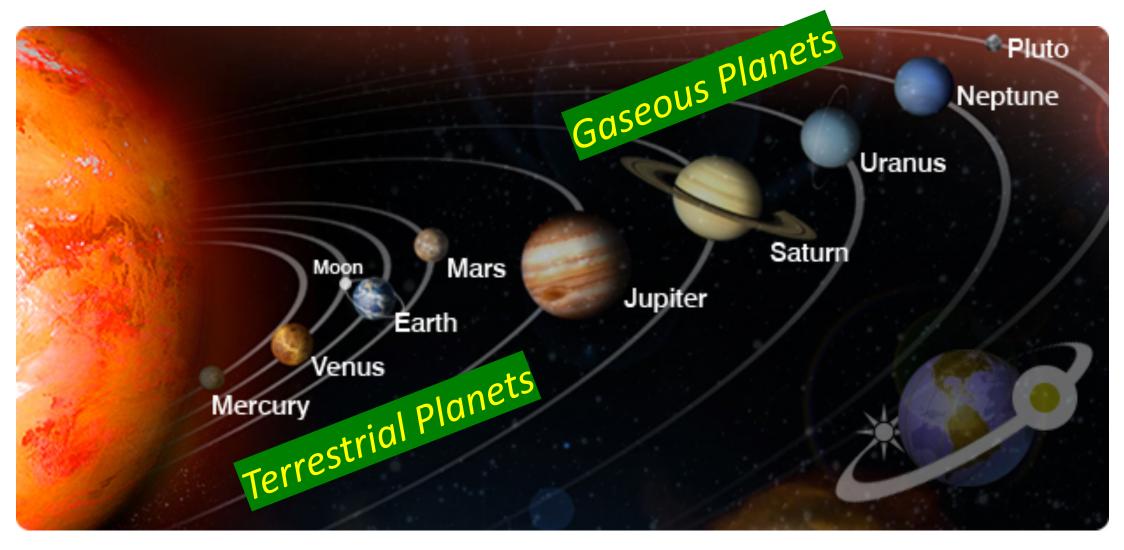
(Example) 1008 mb isobar: everywhere along this line surface pressure equals 1008 millibars (mb)

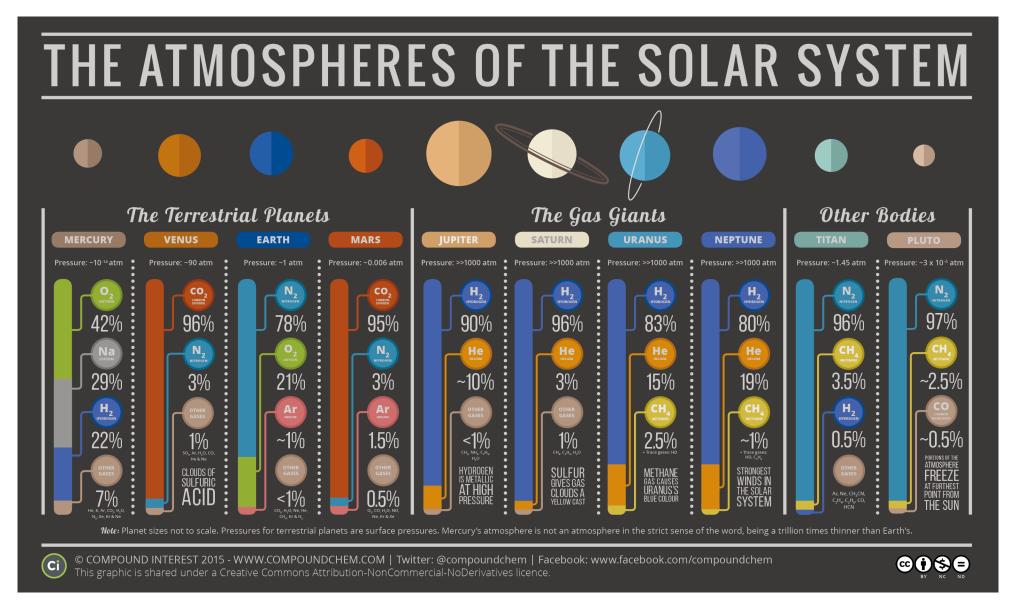
The Sun: Composition

Element	Abundance (percentage of total number of atoms)	Abundance (percentage of total mass)	
Hydrogen	91.2	71.0	
Helium	8.7	27.1	
Oxygen	0.078	0.97	
Carbon	0.043	0.40	
Nitrogen	0.0088	0.096	
Silicon	0.0045	0.099	
Magnesium	0.0038	0.076	
Neon	0.0035	0.058	
Iron	0.0030	0.14	
Sulfur	0.0015	0.040	

https://solarsystem.nasa.gov/solar-system/sun/in-depth/

Auroras


(Absorption of charged particles from "solar wind" by N_2 and O_2 in Upper Atmosphere) (Occur at high latitudes, produces stunning visuals called "auroras")


Aurora Borealis: Northern Hemisphere ("northern lights") Aurora Australis: Southern Hemisphere

https://www.nasa.gov/mission_pages/sunearth/aurora-news-stories/index.html

Atmospheres of Solar System Planets

https://solarsystem.nasa.gov/news/436/10-things-planetary-atmospheres/

https://www.planetary.org/multimedia/space-images/charts/the-atmospheres-of-the-solar-system.html

Our Nearest Neighbors: Venus, Mars vs. Earth

	NASA	NASA	NASA
	Venus	Earth	Mars
Carbon Dioxide (CO ₂)	96.5%	0.03%	95%
Nitrogen (N ₂)	3.5%	78%	2.7%
Oxygen (O ₂)	Trace	21%	0.13%
Argon (Ar)	0.007%	0.9%	1.6%
Methane (CH ₄)	0	0.002%	0

KEY POINTS

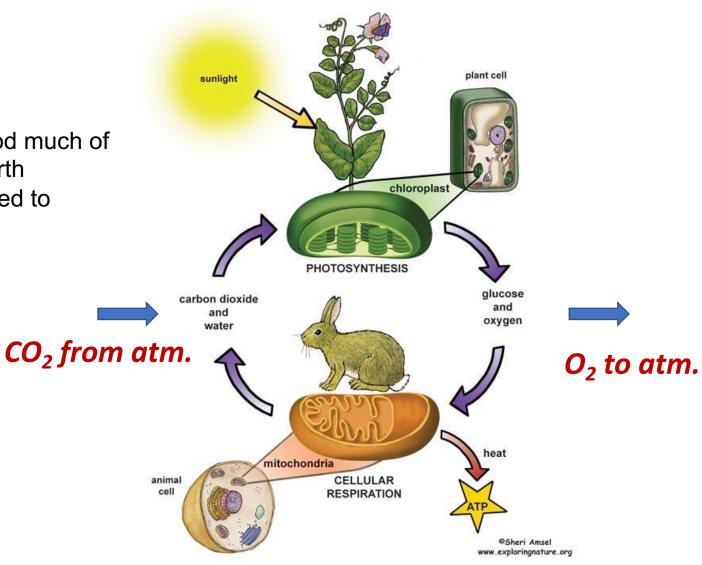
- Earth unique in that it has abundant oxygen (O₂)
- Venus and Mars are mostly carbon dioxide (CO₂)

Further Details: Venus, Mars vs. Earth

T _{obs} , K (°C)	735 (462)	288 (15)	215 (-58)
Atmosphere: Pressure, kPa	9300	101	0.64
composition	CO ₂ (0.965),	N ₂ (0.78),	CO ₂ (0.95),
	N ₂ (0.035),	O ₂ (0.21), Ar(0.009),	N₂(0.03), Ar(0.02),
[trace gases]	[SO ₂ , Ar]	[CO ₂ , H ₂ O]	[O ₂ , CO]

VENUS

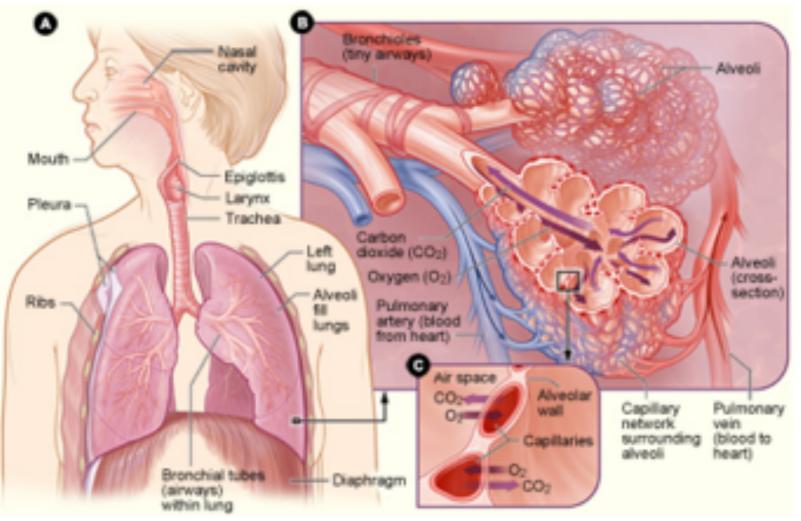
- High pressure, thick CO₂ atmosphere
- Pressure \sim 90 times higher than on earth
- Very intense greenhouse effect (warms planet)
- High temperature (462 deg Celsius)


MARS

- Low pressure, thin atmosphere
- Pressure \sim 100 times lower than on earth
- Mostly CO₂, however little greenhouse effect since atmosphere thin
- Low temperature (-58 deg Celsius)

Earth's Life Cycle

Key Points


- Plant life evolved on earth, in during this period much of the CO₂ from early pre-life atmosphere on earth removed by photosynthesis. Oxygen outgassed to atmosphere.
- Source of O₂ in Earth's Atmosphere
- Requires water in liquid phase to occur.

Photosynthesis and Cellular Respiration

https://en.wikipedia.org/wiki/Geological history of oxygen

Human Respiratory System

- A. Air from mouth passes to lungs through Bronchioles, which terminate at alveoli
- B. CO_2 / O_2 exchange during breathing occurs between capillaries and alveoli
- C. Capillaries surround alveoli

Too little O₂: Asphyxiation

- $19.5 23.5\% O_2$ in air optimal for human breathing
- As percentages reduce, increasing risks
 - 14 16% light-headed/ nausea
 - 10 14% fainting
 - < 10% risk of death</p>
- Inert gases (Ar, Ne, He, Kr) often associated w asphyxiation since they are not detectible by human senses (non-odorous, do not directly impact health) and can displace oxygen at high concentrations.
- <u>https://sciencing.com/minimum-oxygen-concentration-human-breathing-15546.html</u>
- <u>https://www.analoxsensortechnology.com/blog/2016/02/02/what-is-an-oxygen-depletion-sensor/</u>

Rust: Example of corrosive effect of oxygen on ferrous metals*

Ferrous: containing iron