METR/ENVS 113 Lecture 6: Air Pollution Emissions

SJSU Fall Semester 2020 Module 2: Outdoor Air Pollution Frank R. Freedman (Course Instructor)

Outline

• Air Pollution Emissions: Basic Concepts

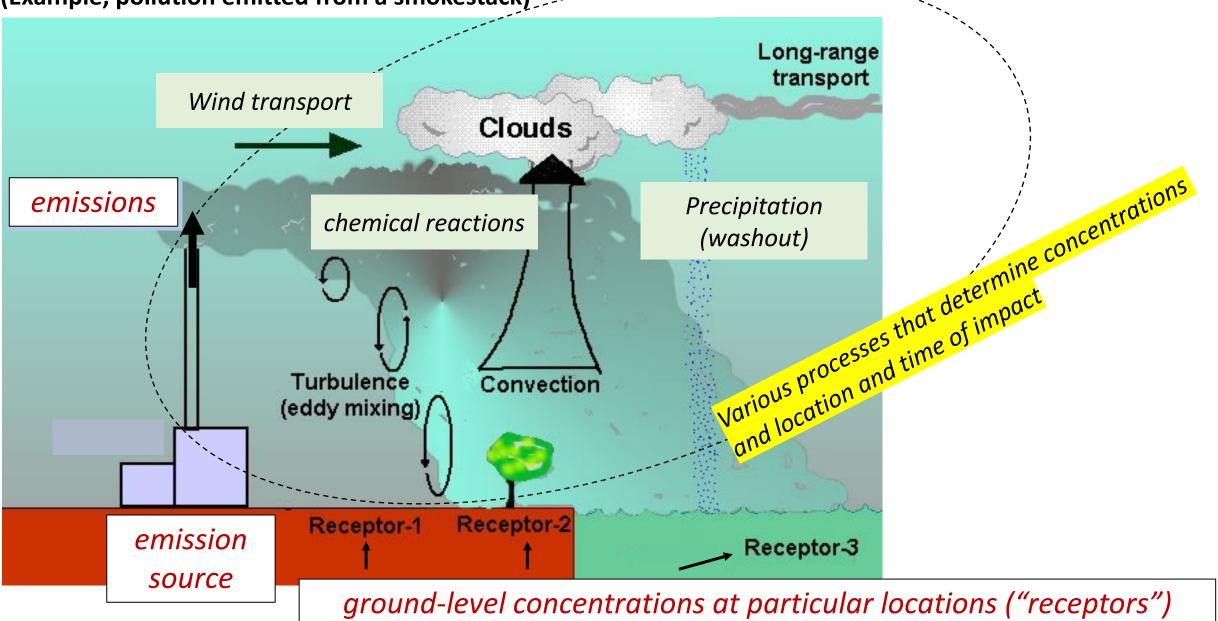
- Definitions
- Emissions \rightarrow Concentrations \rightarrow Impacts

• Air Pollution Emissions: Sources & Processes

- Stationary vs. Mobile
- Combustion: Major Anthropogenic Emission Process
- Others: Fugitive, Evaporative, Dust, Wildfires, etc ...

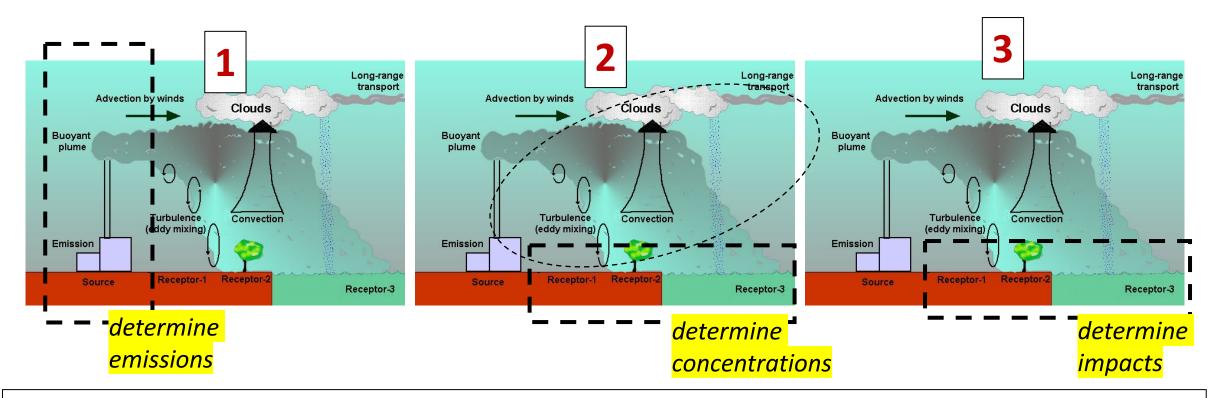
Air Pollution Emissions (Basic Concepts)

Air Pollution Emissions


- <u>Emissions</u>: The amount of pollutant coming from a pollution source over some time.
- <u>Annual emissions</u>: tons per year, pounds per year, etc ...
- <u>Other ways</u>: pounds per day, kilograms per day, grams per second, milligrams per second.
- Emissions per unit area per time: mg per square km per day, tons per acre per year
- Care must be taken to understand what a reported emission number means (read the footnotes and other "fine print").

Air Pollution Concentrations

- <u>Concentration</u>: The amount of pollution per amount of air.
- Parts per Million (ppm), Parts per Billion (ppb)
 - # of molecules of pollutant compound per million (billion) molecules of air
 - Example 40 ppbv of O_3 : " for every billion molecules of dry air, 40 of them are ozone molecules
 - Applicable to gases
- Mass concentrations
 - mass of pollutant gas or particles per volume of air
 - Example 150 μ g/m³ of airborne dust = "150 micrograms of dust per cubic meter of air"
 - Applicable to both gases and particulates


Depiction: Emissions \rightarrow **Concentrations**

(Example, pollution emitted from a smokestack)____

Addressing Air Pollution Problems: Three Steps

(Emissions -> Concentrations -> Impact Assessment)

- 1. Determine emissions from source(s).
- 2. Determine concentrations at locations of interest resulting from emissions from source.
- **3**. Determine **impact** at locations of interest by comparing concentrations to some relevant standard, threshold or level of concern.

Air Pollution Emissions (Sources & Processes)

Emission Source Categories: "Stationary" versus "Mobile"

- Stationary Source: Fixed in Space
 - Major stationary sources are large factories, refineries, industrial facilities
- Mobile Source: Moving in Space
 - Usually refers to motor vehicles (cars, trucks, routine traffic)

A large stationary source

mobile source

Emission Processes

(Several others ... here just a sampling of common processes)

- Combustion
- Fugitive
- Evaporative
- Dust
- Wildfires

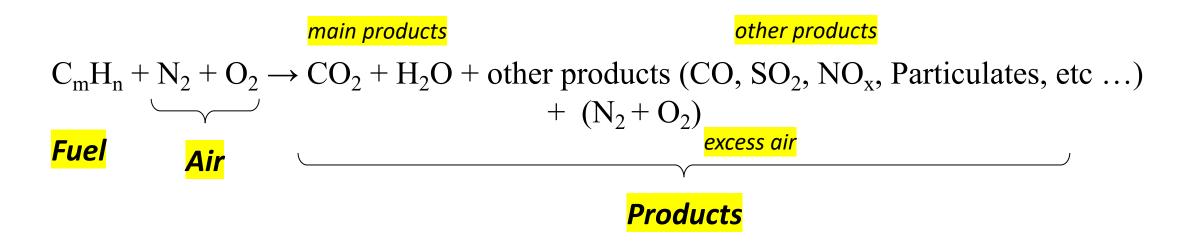
Combustion

- Automobile tailpipe emissions.
- An example of a "mobile source".
- Combustion of gasoline and diesel fuel

- A major industrial facility.
- An example of a "stationary source".
- Many industrial boilers, ovens, engines ...
- Fired by combustion of hydrocarbon fuel stocks.

"Combustion" is burning something ...

- For example ...
 - Burning gasoline in automobiles
 - Burning <u>diesel</u> in trucks
 - Burning jet fuel in airplanes
 - Burning <u>coal</u> in power plants
 - Burning <u>natural gas</u> (methane, CH_4) in power plants and residences.
 - Burning wood in homes and controlled burns.
 - Burning crops and other biomass for agriculture.
 - Burning residual oil (bunker fuel) to power ships
 - Burning <u>coke</u> in a refinery.
- Underlined "fuels" above are all <u>carbon-based fuels (hydrocarbon fuels</u>). All except wood & biomass are <u>fossil fuels</u> ... derived from crude oil or natural gas extracted from earth.


Emissions from Combustion (1)

ENERGY +

Air + Fuel + High Temperature ---- Combustion ----- CO₂, H₂O, CO, NO_x, SO₂, unburned hydrocarbon gases ("vapors") and particulates ("smoke") +

Excess Air

Basic Chemical Reaction

Emissions from Combustion (2)

- <u>Complete Combustion</u>: All carbon and hydrogen in fuel and oxygen in air is reacted to carbon dioxide (CO₂) and water vapor (H₂O). Requires a 14.7 to 1 ratio of air to fuel ("stoichiometric ratio").
- Incomplete Combustion: Some carbon/hydrogen/oxygen goes to other products (carbon monoxide, various "unburned" hydrocarbon gases, smoke particles, etc ...). Fuel-rich conditions are ratios less than 14.7 to 1. Fuel-lean conditions are ratios greater than 14.7 to 1.
- Carbon based air pollutants (CO, smoke, unburned HCs) tend to favor fuel-rich conditions.
- A small portion of the nitrogen in air is converted to nitrogen oxides (NO_x = NO + NO₂). Tends to favor fuel-lean conditions.
- Sulfur in fuel is mainly converted to sulfur dioxide (SO₂). Mostly associated with coal since coal has high sulfur content.

Clean Air vs. Combustion Gas

- Clean Air
 - Nitrogen (75%)
 - Oxygen (20%)
 - Water Vapor (1 4%)
 - Carbon Dioxide (0.04%)
- Combustion Gas (Exhaust Gas released to air after combustion)
 - Nitrogen (70%)
 - Oxygen (0-6%)
 - Water Vapor ($\sim 10\%$)
 - Carbon Dioxide (10 15%)
 - Other products (trace amounts): CO, SO₂, NO_x, Particulates, unburned HC gases.

Fugitive

- Oil extraction facility
- Gases escape to air during processing.
- An example of "fugitive" emissions.

- An industrial facility
- Gases escape to air during operations.
- Another example of fugitive emissions.

Evaporative

- Gasoline is very evaporative ("volatile")
- Organic hydrocarbon gasoline vapors readily escape to atmosphere.
- A major source of "volatile organic compounds" (VOCs)

- An industrial facility
- Gases escape to air during operations.
- Another example of fugitive emissions.

Volatile Organic Compounds (VOCs)

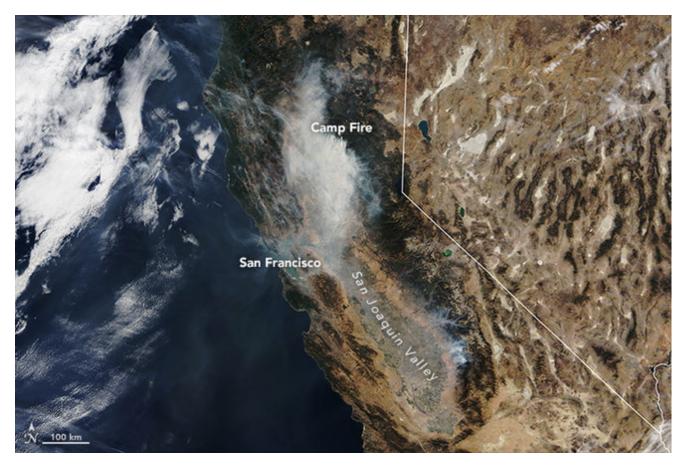
- Organic hydrocarbon* compounds with relatively low boiling points. (50-200 °C)
- They readily evaporate into the air.
- Gasoline and other hydrocarbon fuels
- Indoor Sources: adhesives, solvents, building materials, paints, tobacco smoke, room deodorizers, cooking, carpets, cleaning agents, upholstery
- "BTEX": Benzene, Toluene, Ethene, Xylene
- Others: <u>formaldehyde</u>, acetone (nail polish remover
- Alcohols: ethanol, methanol

Dust

- Construction / agricultural equipment.
- Kicks up dust to air.
- An example fugitive dust emissions.

A major "haboob" windblown dust event in Phoenix, AZ

- Windblown dust
- An increasingly important problem in U.S. Southwest
- Requires sustained winds > 10 mph.
- Many health problems associated w windblown dust.


Dust can reduce visibility as well

Wildfires

Wildfire smoke

Satellite image of Camp Fire (Northern California, Nov 2018)

