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Abstract: The main objectives of this chapter are to introduce the state-of-the-art numerical 
algorithms for the advection and diffusion used in Eulerian models and to discuss their theoretical 
and numerical characteristics.  The Eulerian approach allows incorporation of different physical 
and chemical processes involved with the gaseous and particulate constituents in the atmosphere.  
The governing conservation equation for tracer species dispersion is derived.  Approximations in 
the atmospheric dynamics and fundamental concepts used in the description of turbulence are 
explained.  Some analytical solutions are provided for simplified dispersion conditions to illustrate 
basic processes in the atmospheric dispersion models.  In the Eulerian approach, governing 
equations can be solved with a fractional time step or an explicit-implicit method to take 
advantage of numerical efficiency and knowledge of physical parameterizations of atmospheric 
surface flux exchange, advection, and diffusion processes.  This chapter describes numerical 
solution methods for each physical process component in the Eulerian dispersion model.  We 
provide fundamental steps used in the derivation of numerical advection algorithms, horizontal 
and vertical eddy diffusivity formulations, and local and non-local vertical diffusion methods.  In 
the Appendix we have compiled vertical eddy diffusivity formulations in the literature, numerical 
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solution methods of the local and non-local vertical diffusion algorithms, and Numerical 
algorithms with two-level time differencing for constant grid spacing. 
 
Key Words: Air quality modeling, advection, diffusion, numerical algorithms, Eulerian 
modeling, local and non-local closure, eddy diffusivity. 
 
 
Air pollution diffusion can be numerically simulated by several techniques that 
are generally divided into two categories based on the frame of references: 
Eulerian models and Lagrangian models.  Figure 1 shows that the Eulerian 
reference system is fixed with respect to earth while the Lagrangian reference 
system follows the atmospheric motion.  Russell and Dennis (2000), in their 
recent critical review of photochemical models, state that Eulerian models are 
becoming dominant.  This chapter describes the Eulerian formulations for the 
atmospheric advection and diffusion processes used in comprehensive air quality 
models.  The basic governing conservation equation for tracer species is derived.  
To help reader’s understanding of the physical processes involved, analytical 
solutions for simplified dispersion models are provided and discussed.  For 
realistic atmospheric conditions where simple assumptions on the wind field or 
the diffusion parameters are not available, highly accurate numerical solutions are 
applied to solve the governing dispersion equation.  The Eulerian approach allows 
incorporation of different physical and chemical processes involved with the 
atmospheric gaseous and particulate constituents.  The governing equations can 
be solved with a fractional time step or explicit-implicit method to take advantage 
of numerical efficiency and knowledge of physical parameterizations of 
atmospheric surface flux exchange, advection, and diffusion processes.  The main 
objectives of this chapter are to introduce the state-of-the-art numerical 
algorithms for the advection and diffusion used in Eulerian models and to discuss 
their theoretical and numerical characteristics. 
 
 
1 Air Quality Modeling Methods 
 
Many different numerical techniques can be used for studying the behavior of the 
atmosphere. Lewis F. Richardson around 1910 made first attempt of numerical 
weather prediction with mechanical calculators and complex computing forms.  In 
the mid-1940s, John von Neumann of the Institute of Advanced Studies at 
Princeton began to redesign the first electronic computer ENIAC (developed by J. 
Mauchly and P. Eckert) primarily for the purpose of weather prediction with the 
stored - program technique, which is now known as the von Neumann’s design.  
Since, the development of modern digital computers has followed closely to the 
von Neumann's design and new computational capabilities have been regularly 
tested with "grand challenge" problems of other computational science fields.  
Very often, weather prediction models have been among the initial testing 
programs for newer, faster, and larger computer architectures. 
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Figure 1.  (a) In the Lagrangian system, the observer follows movement of 
air parcel, and (b) in the Eulerian system, the observer studies atmospheric 
motion at a fixed reference point. 
 

As digital computer memory capacity has become larger, and CPU speed has 
become faster, the complexity of weather prediction models has increased 
tremendously.  As a part of atmospheric processes, techniques used for solving 
atmospheric diffusion have been slowly but surely benefiting from the 
developments in atmospheric science and computer hardware development.  For 
example, simple approaches such as Gaussian and box modeling techniques were 
popular initially and then use of Lagrangian modeling paradigm followed.  
Starting in the mid-1970s, the Eulerian or hybrid air quality models have been 
available for air pollution assessment studies and the acceptance has been 
strengthened by the need to include complex atmospheric processes under one 
system.  In the following, we briefly introduce different modeling techniques. 
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1.1 Gaussian Models 
 
Gaussian models have been used for last forty years as the most common air 
pollution models for regulatory applications as they are based on analytical 
solutions that require less computational power than numerical models.  They 
employ Gaussian statistical distribution formulas to describe the three-
dimensional concentration field generated by the diffusion of emissions of inert 
species under static meteorological and emission conditions.  Because that the 
Gaussian formulation is based on the uniformity of the eddy diffusivity, the 
validity deteriorates severely in vertical wind shear, diurnal variations of wind 
and atmospheric stability, and topography and land use variations.  Furthermore, 
their applicability is affected by certain temporal and spatial scale considerations 
for which the averaged conditions can be estimated to satisfy the limiting 
assumptions.  Because of this, various types of special Gaussian models have 
been built to address specific environmental conditions.  EPA distributed many of 
these models as a part of UNAMAP models starting in the late 1960s.  EPA has 
advertised most UNAMAP (User's Network for Applied Modeling of Air 
Pollution; see Zannetti, 1990) models to be just guideline models and stressed that 
the models may be used only if the situations are suitable for the particular model.  
For the details, readers should refer to Chapter 7 for the Gaussian plume models 
and Chapter 8 for Gaussian puff models. 
 
1.2 Box Models 
 
Box models are zero-dimensional models that assume pollutants in an imaginary 
box or column are bounded by the ground and the potential temperature inversion 
base and spatially homogeneous, instantaneously well mixed.  Using a continuity 
equation, the rates of pollutant concentration changes in the box (caused by 
horizontal advection, emission, entrainment of background pollutants due to 
mixing layer growth, and chemical reactions) can be simulated.  The box model 
can then predict the temporal variations of the spatially averaged concentrations, 
and can estimate mass balances of multiple pollutants over the limited domain 
represented in the box.  Because of the simplifications used in the development of 
these box models, they are incapable of predicting air quality for regions with 
significant spatially inhomogeneous emissions, or where the characteristic 
turbulent mixing time scale is larger than the chemical reaction time scales.  Refer 
to Chapter 2 for additional description of box models. 
 
1.3 Lagrangian Models 
 
Lagrangian (or Trajectory) models are based on species conservation equations 
describing atmospheric diffusion and chemical reactions stated in terms of 
moving coordinates.  The observer adopts moving coordinates that follow sets of 
hypothetical columns of air similar to the ones described in the photochemical 
box models.  The air columns move along with the prevailing winds, so there are 
no advection terms in the set of governing equations.  Primary pollutant emissions 
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are injected into the columns when they pass over source regions.  Similar to box 
models, trajectory models simulate chemical reactions in each column.  While 
Lagrangian models are one step beyond box models in logical development, the 
assumptions they carry are not appropriate when topographical features cause 
complex wind fields or vertical wind shear within the columns.  Uncertainty in 
the trajectory of column of air under large wind shear, and difficulties in 
describing source and sink processes are almost insurmountable because of the 
inherent assumption that the integrity of air parcels must be maintained with the 
Lagrangin approach.  Trajectory modeling is good when simple back-trajectory 
transport can be used to adequately describe the motion of pollutants.  Lagrangian 
models require a factor of one to two orders of magnitude more computational 
resources than box models depending on the number of atmospheric columns 
followed.  Lagrangian models, however, are not as computationally expensive as 
Eulerian models.  Consult Chapter 11 for an in-depth description of the 
Lagrangian models. 
 
1.4 Eulerian Models 
 
In the Eulerian approach, the observer adopts a fixed frame of reference, usually 
the surface of the earth.  This enables easy representation of the pollutant 
production and transformation processes.  Most Eulerian models use a grid 
system defined in an orthogonal set of coordinates to describe atmospheric 
dynamics (advection and diffusion), emissions sources, and chemical production 
and destruction.  Most numerical weather prediction models and comprehensive 
air quality models rely on this paradigm.  Eulerian models generate four-
dimensional (space and time) trace species concentration fields for each of the 
species modeled.  Eulerian models generally use fewer simplifying assumptions 
in the simulation of atmospheric transport compared to other modeling 
techniques.  By the nature of the grid discretization, Eulerian models cannot 
resolve trace species concentration features at sub-grid scales because emissions 
are instantly mixed into the grid.  Although one can attempt to use very small grid 
size to resolve the detailed emissions distributions, there is a practical limit at 
which atmospheric turbulence statistics cannot be described with 
parameterizations in terms of the mean state variables (such as wind and 
temperature) as well as the inhibiting high computational cost.  To compensate for 
this deficiency, some Eulerian models include either trajectory submodels or 
Gaussian dispersion submodels to treat initial transport and chemical 
transformations of pollutants coming from large point source emissions within the 
grid.  These hybrid (e.g., "plume-in-grid") grid models attempt to minimize the 
effect of instantaneous dilution of pollutants over the entire grid box assumed by 
pure Eulerian models.  Once the point source plumes reach a certain size, they are 
added to the existing concentrations in the appropriate grid cells, and 
subsequently go through transformation and transport processes within the grid 
model.  Numerical diffusion in the advection process and difficulties in 
representing atmospheric mixing processes are some of the drawbacks of Eulerian 
models (see section 5). 
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2 Eulerian Formulations 
 
Here we introduce the governing equations for Eulerian dispersion modeling.  We 
discuss assumptions used for the description of atmospheric dynamics, 
turbulence, and averaging techniques that allow deterministic formulations of the 
stochastic atmospheric dispersion phenomena. 
 
2.1 Conservation Equations for Air Pollutants 
 
First, we assume that pollutant concentrations are sufficiently small, such that 
their presence would not affect the meteorology to any detectable extent.  Hence, 
the species conservation equations can be solved independently of the Navier-
Stokes and energy equations.  In a Cartesian coordinate system, the continuity 
equation for air and the governing conservation equation for a pollutant are given 
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where x and y are horizontal coordinates of the reference rotated earth-tangential 
coordinates and z is the distance normal to the x-y surface; u, v, and w are 
corresponding wind components; ρ is air density, ϕi  represents concentration of 
trace species i, and Q  is the source/sink of the pollutant through emissions, 

deposition, and reactions with other pollutants. 
iϕ

 
In this chapter, for simplicity we have adapted a Cartesian coordinate system.  
However, operational mesoscale meteorological models often use quasi-orthgonal 
terrain-following coordinates.  Because the large-scale motions of the atmosphere 
are quasi-horizontal with respect to the earth's surface, motions in horizontal and 
vertical directions can be separated using the metric tensor components that 
define the coordinate transformation in the meteorological generalized coordinate 
system.  Refer to Byun (1999a) for the corresponding governing set of equations. 
 
Eqs. (1) and (2) can be combined to provide a conservation equation for the 
species mixing ratio,qi =

ϕ i

ρ
 

 

ρ∂
∂

∂
∂

∂
∂

∂
∂ ϕiiiiii Q

z
q

w
y
q

v
x
q

u
t

q
dt

dq
=+++=    (3) 

 



10   Eulerian Dispersion Models  219 

Eq. (3) is the governing equation of the Lagrangian model, which is based on the 
principle that mixing ratio is conserved following the air parcel when there is no 
source term (i.e., ).  Eulerian models can also realize the same constraint.  
However, because the information must be discretized on the Eulerian grid, a 
numerical advection scheme based on Eq. (3) is sometimes called a Semi-
Lagrangian Transport (SLT) method. 

0=iQϕ

 
2.2 Assumptions on Atmospheric Dynamics 
 
The temporal and spatial scales of atmospheric motion span many orders of 
magnitude (see Figure 2).  Therefore, it is impossible to model the motion with a 
straightforward explicit method.  To make atmospheric simulations manageable, 
scientists have applied several techniques to reduce the range of scales involved 
by applying simplification assumptions and averaging techniques.  The spectral 
gap (low dynamic energy region which can vary from tens of minutes to a few 
hour time-scale) helps to separate weather from turbulence.  Because of this gap, 
it is possible to consider these two entities (weather and turbulence) 
independently and to execute proper mathematical operations to determine the 
statistical properties.  The nonlinear Navier-Stokes equations contain information 
about atmospheric motion and transport over a broad range of spatial and 
temporal scales, ranging from global scale eddies to the smallest eddies 
contributing to molecular dissipation. 
 
Several important hypotheses, basic assumptions, limits of applications in air 
quality modeling, and examples of usage of atmospheric turbulence and 
dispersion theories, are briefly discussed below.  More detailed information on 
atmospheric turbulence and diffusion can be found in Pasquill and Smith (1983), 
Panofsky and Dutton (1984), Stull (1988), and Arya (1988, 999). 
 
2.2.1 Hydrostatic and Non-Hydrostatic Assumptions 
 
The hydrostatic equilibrium assumption states that gravity and the vertical 
pressure gradient force are in balance.  Under hydrostatic equilibrium, the 
atmospheric pressure at a given height is simply related to the weight of the air 
above.  Since the atmosphere is constantly moving, the hydrostatic assumption 
considers not only the static components of pressure and density but also the 
dynamic perturbation pressure field (which is responsible for the horizontal 
velocity field) to the perturbation density field.  The vertical acceleration due to 
gravity is smaller than the horizontal acceleration driven by the horizontal 
pressure difference.  The result is that the vertical acceleration cannot be easily 
determined from the vertical momentum equation for large-scale atmospheric 
motions. 
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This hydrostatic approximation is invalid for small-scale motions such as 
convection where the vertical acceleration has a magnitude similar to gravity.  For  
 

 
 

Figure 2.  Temporal and spatial scales for atmospheric dynamic systems.  A 
spectral gap is apparent around the time scale of thousand seconds.  
(Dennis et al., 1996). 

 
mesoscale atmospheric models with small horizontal grid sizes (e.g., less than 2 
km) where the influence of thermodynamics has direct impact on the atmospheric 
motions, the hydrostatic pressure calculation may result in less realistic 
predictions of the atmospheric flows.  For this reason, the nonhydrostatic 
primitive set of equations has recently been applied to study small-scale 
atmospheric features.  The primary difference between the nonhydrostatic model 
and its hydrostatic counterpart is that the nonhydrostatic model requires explicit 
integration of the vertical velocity component. 
 
There are two methods for nonhydrostatic pressure calculation.  One uses a fully 
compressible continuity equation.  The other employs an elastic continuity 
equation.  For the latter, a Poisson partial differential equation for pressure has to 
be solved at each time step.  Furthermore, when terrain-following coordinate 
transformations are used solving the Poisson equation is very costly.  Researchers 
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have found that the integration time step for an elastic nonhydrostatic model can 
be much larger than that for a hydrostatic model, especially when the acoustic 
waves are solved separately from other meteorological waves (e.g., Klemp and 
Wilhelmson, 1978). 
 
2.2.2 Incompressible Atmosphere Assumption 
 
The incompressible atmosphere assumption involves the thermodynamic 
characteristics of air.  The equation of state describes how density is affected by 
the changes in pressure and temperature fields.  The incompressibility of air can 
be assumed if the time rate of change of density variation is much smaller than the 
time scales of motion (Batchelor, 1967).  This condition is satisfied mostly for the 
case when wind speed is substantially less than the speed of sound, and the speeds 
of gravity waves are much slower than the speed of sound, and limits the vertical 
extent of motion to be less than about one kilometer.  The result is that the change 
of density due to pressure variation is negligible, and so the fluid behaves as if it 
were incompressible.  Basically, the incompressible atmosphere assumption is a 
shallow-water approximation for an adiabatic atmosphere.  With the 
incompressibility assumption, the distinction between the conservative form 
equation (Eq. 2) and its advective form (Eq. 3) becomes blurred.  Consequently, 
concentrations in the form of either density or mixing ratio are often used 
indiscriminately in atmospheric diffusion equations.  One might expect that as 
long as the wind field satisfies the nondivergent flow approximation, an air 
quality model would satisfy the pollutant species mass conservation.  The 
implication of this assumption is that a nondivergent wind field does not 
guarantee the mass conservation of pollutant species if there is inconsistency in 
air density and wind fields.  It is surprising that the lack of mass conservation 
under the nondivergent flow has not been addressed rigorously in air quality 
modeling studies. 
 
2.2.3 Boussinesq Approximations 
 
The set of Boussinesq approximations used in atmospheric boundary layer studies 
can be summarized as follows: 

• Deviations of thermodynamic variables from reference values (denoted by 
subscript o) are small (hydrostatic atmosphere at rest): 
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• Molecular properties are essentially constant.  Since deviation of 

temperature is small, most molecular properties such as viscosity (ν), 
molecular diffusivity (γ), and molecular heat conductivity (κ) are constant 
at the given temperature To. 
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• Variations in temperature and density can be ignored except when they are 
associated with buoyancy forces.  By carefully ordering the derivation 
steps from the more fundamental compressible equations to the 
Boussinesq equations, it can be shown that the fluctuations in density 
become only significant when multiplied by the acceleration due to 
gravity. 

 
The Boussinesq approximations are often used in air quality modeling to simplify 
equations of motion and trace gas conservation.  However, for small horizontal 
scales or for deep atmospheric layers, the assumptions in the Boussinesq 
approximations may not hold.  Using Boussinesq approximations lead to the 
following simplification of the equations of motions in the planetary boundary 
layer (PBL): 

• Flows can be treated as incompressible. 
• The equation of state for fluctuating components is simplified so the ratio 

of fluctuating density to total density can be approximated by the ratio of 
temperature fluctuation to the reference temperature. 

 
Many Eulerian dispersion models use such limiting assumptions on atmospheric 
dynamics as described above.  Often an incompressible atmosphere assumption is 
used with the Bousinesq approximations.  These assumptions are acceptable only 
for certain limited situations such as studying atmospheric dispersion in the 
shallow boundary layer with little topographic features and nondivergent wind 
field.  Recently, air quality models with nonhydrostatic assumptions have been 
developed (e.g., Chang et al., 1997; Byun and Ching, 1999), and the effects of air 
density variations on pollutant transport are considered in such models. 
 
2.3 Assumptions on Atmospheric Turbulence 
 
We cannot explicitly solve the instantaneous species conservation equation for the 
smallest scales due to computer limitations and uncertainties in the input data.  
We must then transform Eqs. (1) and (2) to form a deterministic relation.  We 
assume that there is a natural separation of atmospheric motions between a 
homogeneous fine scale and the inhomogeneous mesoscale that is affected by the 
topography, surface conditions, and large-scale weather.  Then we introduce the 
concept of turbulence and mean components for studying stochastic atmospheric 
flows.  We expect that as long as the turbulent components can be parameterized 
we can obtain deterministic governing equations for the mean flow.  Basic 
concepts of atmospheric turbulence are reviewed below and more detailed 
information can be found in Stull (1988) and Arya (1999). 
 
2.3.1 Isotropic Turbulence 
 
Isotropy implies that fluid motions are invariant with respect to rotation and 
reflection of the coordinates.  True isotropy occurs only when homogeneity is 
present in all directions.  In isotropic turbulence, the variances of the three 
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velocity components are the same because they are invariant with the rotation of 
the coordinate axis.  Another consequence of isotropy is that the velocity 
components are not correlated with each other.  However, in the PBL, the 
variances of the velocity components are not equal, and the horizontal and 
vertical velocity components are correlated near the ground.  Thus the 
atmospheric turbulence in the PBL is not strictly isotropic.  However, the smallest 
fluctuations imbedded in the larger scales of motions can be isotropic.  The 
invariant characteristic of the smallest scales of turbulence is termed local 
isotropic turbulence.  Measurements of boundary-layer turbulence show that these 
predictions are indeed satisfied, provided that the size of the turbulent eddies 
involved is small compared to the distance to the surface.  Such eddies are far 
enough from the surface that they are independent of boundary influences.  In the 
case of isotropy, or local isotropy, the nine components of Reynolds stress 
(momentum fluxes) can be reduced to just functions of the longitudinal (along the 
wind) and lateral (across the wind) covariances.  By rotation of coordinates, any 
longitudinal spectrum can be transformed into any other longitudinal spectrum.  
However, rotation of coordinates cannot transform longitudinal functions into 
lateral functions.  Since all longitudinal functions are the same and all lateral 
functions are the same under coordinate rotations, these two functions describe 
spectral properties of isotropic or locally isotropic turbulence. 
 
2.3.2 Taylor's Hypothesis 
 
When the mean velocity of a flow which carries eddies is much greater than the 
turbulent fluctuations, one may assume that the sequence of change in turbulent 
components at a fixed point is simply due to the passage of an unchanging pattern 
of turbulent motion over that point.  The field of turbulence is translated by the 
mean velocity and the spatial turbulence pattern can be depicted exactly with the 
temporal turbulence pattern by the transformation x = U t, where x is the 
longitudinal distance, U is the transport mean wind speed, and t is the travel time.  
This is called the Taylor's hypothesis or the frozen-wave hypothesis.  The Taylor’s 
hypothesis is significant as it enables to infer spatial structure of turbulence from 
measurements at one point.  For the Taylor's hypothesis to be valid, the turbulence 
must be temporally stationary and spatially homogeneous at least along the 
direction of mean wind.  These conditions are often satisfied in wind tunnels, and 
are often approximately valid in the atmosphere provided the measurement 
location and period are chosen carefully.  Strong wind shears in the vertical will 
generally distort eddies as they move (tearing them apart, in effect) so that the 
Taylor's frozen-wave hypothesis cannot be sustained.  In spectral terms, the 
hypothesis fails at frequencies f smaller than vertical wind shear.  Taylor's 
hypothesis can hardly be valid when standing waves (such as those produced by 
hills and mountains) cause spatial variations but have little effect on temporal 
measurements at one location.  In atmospheric dispersion modeling, a relationship 
between the Lagrangian and Eulerian spectra is often derived from the Taylor's 
frozen-wave hypothesis. 
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2.3.3 Homogeneity 
 
A turbulent flow is homogeneous if its statistics do not vary in space.  The 
presence of the earth's surface is important in two ways with respect to 
homogeneity.  First, statistics will vary relative to distance from the ground so 
that it is unlikely that homogeneity could prevail, even approximately, except in 
the horizontal.  Second, if the terrain and land use are inhomogeneous, with hills 
and valleys, or with cities, fields, and forests, then the flow near the ground can 
hardly be expected to be horizontally homogeneous because of the effects of the 
surface on the flow itself.  Horizontal homogeneity of small-scale motions near 
the ground is usually not a good approximation over most continental areas.  The 
terrain is neither flat enough nor sufficiently homogeneous, and in general, local 
statistics over large areas will not be the same.  Perhaps, at higher levels in the 
boundary layer, horizontal homogeneity is more nearly approached.  The 
assumption of vertical homogeneity is almost never valid because of the presence 
of wind shear and stratification.  Mean wind speed and temperature vary rapidly 
with height near the terrain surface, and then somewhat less rapidly aloft.  In a 
homogeneous turbulence, the spatial correlation is not a function of the spatial 
coordinate but instead is only a function of the separation vector. 
 
2.3.4 Stationarity 
 
A random variable is said to be stationary if its one-dimensional probability 
functions are independent of time and its joint (multi-dimensional) probability 
functions are invariant with respect to a fixed translation in time (i.e., dependent 
only on time difference rather than time itself).  In reality we do not insist that the 
variable be exactly stationary.  Instead we accept quasi-stationarity (a series of 
near-equilibrium states) if there is a significant separation between the time scales 
of turbulence and of large-scale weather phenomena.  Usually this assumption is 
valid for small-scale flows under steady meteorological conditions where 
influence of synoptic scale disturbance is not present. 
 
2.3.5 Ergodicity 
 
The ergodicity hypothesis states that for stationary random fields time averages 
converge to ensemble (probability) averages as the averaging interval becomes 
very long. Similarly, for homogeneous random fields, spatial averages converge 
to ensemble averages (discussed in Section 2.4) as the spatial interval for 
averaging becomes very large.  When temporal and ensemble averages coincide 
in a suitable sense, the stochastic process is referred to as ergodic.  Ergodicity is a 
very important concept involving volume-preserving coordinate transformations.  
Ergodicity requires stationarity.  To ensure ergodicity, one must establish or 
assume certain properties for ensemble-averaged quantities such as second- or 
fourth-order covariances.  This assumption allows linkage of theoretical 
turbulence description to the experiment results where time averages in 
statistically stationary flows are used.  Mean-square ergodicity is possible even 
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for nonstationary processes, and therefore is often applied in the study of 
atmospheric turbulence.  It implies that the variance of the sample averages 
vanishes as time goes to infinite, even though they may not converge to an 
ensemble average. 
 
2.3.6 Similarity and Dimensional Analysis 
 
Before detailed causal relations can be identified in a system, a dimensional 
analysis can provide a simple but powerful method to establish relationships 
between the various quantities in the system based on their fundamental 
dimensions (Arya, 1988).  If conditions surrounding two experiments are 
identical, the result should be similar.  By dimensional analysis, a similarity 
relationship may be found.  Similarity theory predicts universal functions, which 
may be determined experimentally and tested for reproducibility at other 
locations.  The surface boundary layer theory used in describing atmospheric 
mixing characteristics is mostly derived from the similarity theory. 
 
2.4 Averaging Techniques 
 
Atmospheric motions consist of a vast spectrum of temporal and spatial scales.  
For convenience, the scales are separated to isolate properties of atmospheric 
motions to a limited portion of the spectrum.  The set of primitive equations that 
represents the stochastic atmospheric system must be averaged to a set of 
deterministic equations before the equations can be solved numerically.  The 
averaging process filters the total flow into mean and turbulent components.  The 
spectral gap discussed above (see Figure 2), is not deep enough to provide a 
completely satisfactory solution, but it guides us on how to separate the mean and 
turbulent motions.  For example, to characterize turbulence and mean flow in the 
surface layer, one-hour averages are often used to separate large-scale from 
micro-scale processes.  In this averaging process we limit the descriptions of the 
atmospheric motions to terms of statistical characterization.  However, the 
averaging processes in atmospheric numerical models are more complex than the 
simple distinction between instantaneous descriptions and statistical averages.  
Because we rely on a grid system to represent atmospheric motions and processes 
over a large domain, in effect we are applying spatial averaging over the grid size 
to represent atmospheric phenomena in a grid cell.  The governing set of 
equations for the atmospheric motions and reactions are obtained by applying the 
ensemble averaging to transform the stochastic atmospheric system (described in 
3.2.1) to a deterministic system and, by applying discrete volume averaging, to 
convert into the numerical solution space. 
 
Cotton and Anthes (1989) summarized expected characteristics of averaging 
operators for use in atmospheric modeling as follows: 

• The operators should provide formal mechanisms for distinguishing 
between resolvable and unresolvable eddies. 

 



226  Air Quality Modeling – Vol. I 

• The operators should provide sets of equations that are more amenable to 
integration (either analytically or numerically) than unaveraged systems of 
equations. 

• The average set of atmospheric variables should be capable of being 
measured by current or anticipated atmospheric sensing systems. 

 
The following averaging techniques fit the above characteristics. 
 
2.4.1 Ensemble Averaging 
 
Atmospheric motions are composed of a variety of eddies whose behavior is 
mostly stochastic and random.  This makes a deterministic approach of solving 
the governing Navier-Stokes equations of motion for the entire spectrum of eddies 
in the atmosphere impossible; instead, one has to rely on statistical methods.  
Ensemble averaging is an ideal concept that completely removes randomness and 
filters out eddies of all sizes.  Therefore, the ensemble-averaged equation must 
contain parameterization covering the entire spectral range of eddy motions 
including the largest energy-containing scales.  The largest eddies in any turbulent 
flow are very sensitive to atmospheric and surface conditions.  Therefore, such a 
parameterization cannot be uniformly valid in a wide range of flows.  Turbulent 
flows differ from one another principally in their large-eddy structure.  Small-
scale eddies in turbulent flows seem to be statistically similar.  The ensemble 
averaging process enables us to describe the stochastic atmospheric processes in a 
deterministic sense. The equation for ensemble averaging is: 
 

 fe = lim
N→ ∞

1
N

fk
k =1

N

∑      (5) 

 
where fk, k=1,N are different realizations of f. 
 
However, because atmosphere is neither stationary nor homogeneous, we need to 
find alternative average operators that are suitable for the understanding of field 
measurements as well as for the implementation in computational models.  The 
ensemble averaging is often substituted by the temporal averaging, which will be 
described below. 
 
2.4.2 Reynolds Decomposition and Averaging 
 
Although behaviors of atmospheric motions are stochastic, only average statistics 
are important and their detailed fluctuation of individual eddies is little or no 
concern.  Osborne Reynolds toward the end of nineteenth century suggested 
decomposition of atmospheric variables into mean (denoted with over bar) and 
turbulent components (denoted with prime), i.e., ' ;' gggfff +=+=  where f 
and g are two dependent variables or functions of random variables.  The 
Reynolds averaging conditions are (Arya, 1999): 
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gfgf +=+       (6a) 

 
fccf =       (6b) 

 
fggf =       (6c) 

 

s
f

s
f

∂
∂

∂
∂

=       (6d) 

 
∫=∫ dsffds       (6e) 

 
where c is a constant, s = x, y, z, or t.  The only averaging operation that satisfies 
the Reynolds averaging conditions is ensemble averaging, defined above. 
 
2.4.3 Temporal Averaging 
 
Temporal averaging is the most popular averaging technique used because many 
instruments are available that are capable of measuring time series of atmospheric 
parameters at low cost.  Other techniques (such as the ensemble averaging) are 
extremely difficult to obtain under varying atmospheric conditions.  Temporal 
averaging has been used as a substitute for the ensemble averaging when 
atmospheric turbulence is assumed to satisfy the ergodicity condition described 
earlier.  In order for temporal averaging to characterize atmospheric turbulence, 
the optimal selection of an averaging period is essential.  The averaging period 
should be sufficiently long to ensure a stable averaging of signals from the energy 
containing eddies but not too long to the point that diurnal variations or synoptic 
changes in the atmospheric conditions are masked.  In most studies of PBL, the 
optimum averaging time ranges between 103 to 104 seconds, depending on the 
height of observation, the stability condition, and the moment of the parameter 
under study (Arya, 1988).  An atmospheric model that relies on PBL 
parameterizations should be considered as having corresponding inherent 
uncertainties in its predictions due to the temporal averaging technique applied.  
The equation for temporal averaging is: 
 

 ft = lim
T→ ∞

1
2T

fdt
− T

T

∫      (7) 

 
where T is one half of the period around the time at which the average is evaluated. 
2.4.4 Grid-Volume Averaging 
 
Using a grid-volume averaging method, eddies smaller than the spatial scale are 
removed, leaving a filtered field that is defined at every point continuously in the 
modeling domain.  Grid-volume averaging is similar to applying a moving 
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average to a time series, Eq. (7).  It is simply averaging over fixed volumes, so 
that the averaged field is defined only at the center of the (non-overlapping) 
averaged volumes.  When the grid size is much smaller than the wavelength of the 
energy containing eddies of the system, the grid-volume average is a well-defined 
function.  A volume-averaged model with a grid size much smaller than the 
energy containing eddies requires a very simple parameterization.  This forms the 
basis of the large eddy simulation (LES).  If the grid size is of comparable 
magnitude to the energy-containing scales, or greater than the turbulent integral 
scale, the Reynolds flux in the sub-grid scale must be parameterized.  Therefore, 
if the same parameterization is used, the volume-averaged model with sufficiently 
large grid size becomes similar to the ensemble-averaged model where the 
turbulent transfer must always be parameterized.  Because the grid-volume 
average is defined over a finite volume at an instant in time, it is not measurable 
and models based on grid-volume average cannot be conventionally tested against 
the measurement.  A volume-averaged model cannot provide information on the 
variability across the model grid volume. 
 
The running volume-averaging process results in another continuous function in 
space.  For example, simple volume averaging over a rectangular cell is defined 
as: 
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where ∆V = ∆x∆y∆z .  A general volume averaging is defined with a filter 
function as: 
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where G is the appropriate weighting function whose modulus is one.  In the 
Eulerian modeling, a discrete averaging is applied to a deterministic function (an 
ensemble averaged quantity here) over the fixed volume of the cell (  to 
provide a discrete formulation of the governing equation: 

i, j,k)
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2.5 Reynolds-Averaged Conservation Equations for Air Pollutants 
 
To make the instantaneous species continuity equation useful for air quality 
simulation, we need to derive the governing diffusion equation.  The first step is 
to decompose variables in Eq. 1 into mean and turbulent components.  The 
velocities and concentrations of the various species in atmospheric flow are 
turbulent quantities and undergo turbulent diffusion.  Because turbulent diffusion 
is much greater than molecular diffusion for most trace species, the latter can be 
ignored.  Also we assume the ergodic hypothesis holds for the ensemble 
averaging process, which means the ensemble average of a property can be 
substituted with the time average of that property.  The turbulence is assumed 
stationary for the averaging time period of interest (e.g., 30 minutes to one hour 
for atmospheric applications).  The Reynolds decompositions of air density (ρ) 
and species concentration (ϕi) are expressed as: 
 

'ρρρ +=      (11) 
 

ϕ i =ϕ i +ϕ i '      (12) 
 
Some of the parameters in the conservation equations (1), (2) and (3) are 
nonlinearly related to each other and, therefore, direct application of Reynolds 
decomposition to these parameters will introduce covariance terms that 
complicates the turbulence equations.  Instead, we define averaged mixing ratio 
and its fluctuation component based on Eqs. (11) and (12): 
 

q i ≡ ϕ i / ρ      (13a) 
 

qi ' ≡ ϕ i ' / ρ      (13b) 
 
Similarly, the average contravariant wind components and their fluctuations are 
defined as 
 

u ≡ ρu/ ρ ;  v ≡ ρv / ρ ; w ≡ ρw / ρ     (14a) 
 

wwwvvvuuu −≡−≡−≡ ' ;' ;'     (14b) 
 
This definition allows the continuity equation for the Reynolds averaged variables 
to keep the original conservation form shown in Eq. (1) as 
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Decomposing velocity components in Eq. (2) using Eqs. (14a) and (14b), the 
Reynolds averaged trace species conservation equation, neglecting the molecular 
diffusion, is: 

iiiiiii
i Qww

z
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y
uu

xt ϕϕϕ
∂
∂ϕϕ

∂
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∂
∂

∂
ϕ∂

=+++++++++ )')('()')('()')('( (16) 

 
The source function (i.e., emissions of pollutants) is assumed to be deterministic 
for all practical purposes and there is no turbulent component.  The Reynolds flux 
terms in Eq. (16) can be approximated in terms of the mixing ratio to give: 
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Equation (17) has the "closure problem" that prevents direct solution.  This 
problem occurs because of the nonlinearity of the conservation equations, which, 
upon averaging a random field, leads to unknown turbulence flux terms 
(Reynolds flux) involving the correlations of the random field components.  
Meteorological models only resolve the mean wind components (u, v, w) leaving 
an unresolved portion that is sometimes of the same magnitude as the mean wind.  
Therefore, the turbulent flux terms can be very large.  Even a very fine scale 
meteorological model (e.g., grid resolution of 1 km) cannot provide detailed 
enough information about the turbulent fluctuations.  The spatial and temporal 
scales of the smaller turbulent eddies are so small that a correct numerical 
integration of Eq. (17) would be practically impossible.  Wyngaard (1982) 
suggested that it would probably require a grid size of about 1 mm in the entire 
computational domain, which is computationally impractical for air quality 
problems. 
 
The recognition that the uncertainties brought by the turbulent component can be 
minimized but never eliminated is the key to understanding the significance of the 
ensemble averaging.  This point can be clarified by noting that state variables 
such as wind components and concentrations are stochastic variables; i.e., there 
exists an infinite family of functions of these state variables that satisfy the 
equation of motion and atmospheric diffusion equation.  The situation is described 
in Figure 3, where each possible member of wind of the family generates a 
different concentration.  The average, at a certain point and time, of all possible 
concentrations generated by the different wind gives the theoretical ensemble 
mean concentration.  Naturally, if we could measure wind and concentration 
continuously and in space and time, we could evaluate the exact member of the 
family that has occurred in reality.  Lacking this information, we must assume that 
all theoretically acceptable wind fluctuations are equally possible, thus allowing, 
in the best of possible conditions, the computation of mean concentration (ϕ i ) 
instead of the instantaneous (actual) ϕ i .  An important conclusion that follows 
from the ensemble averaging process is that the concentration output provided by 
all Eulerian models is conceptually different from the air quality data gathered 
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from monitoring activities.  The monitoring data provide estimates of the actual 
concentration within the error limit of the monitoring technique while model 
outputs are estimates of the ensemble average.  The monitoring data may have 
representativeness problem and model output has certain degree of error caused 
by the uncertainties in the input data and approximations in the numerical and/or 
analytical solutions. 
 

t

u' (xo ,t)1

t

t

t

t

t

ϕ (x1,t)1

ϕ (x1,t)2

ϕ (x1,t)n

t1
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ϕ (x1,t)

u' (xo ,t)2

u' (xo ,t)n

 
 

Figure 3.  The infinite family or ensemble of velocity functions (turbulent 
component) u' and the corresponding family of concentration distributions 
(ϕ) each portrayed at fixed points  and  as functions of time.  The 
subscript n (n=1,2…) denotes the member of realization of the ensemble.  
The ensemble mean value 

 xo  x1

ϕ  at a given time t1 is formed by averaging 

  ϕ (x1, t)n  over the infinite ensemble, as indicated by the vertical dashed 
line (adapted from Lamb; in Longhetto, 1980). 

 
The turbulent flux terms can be parameterized using a simple closure scheme 
such as the eddy diffusion concept (K-theory): 
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where K jl  denotes the eddy diffusivity tensor over the index l (l=1,2, or 3) and 
repeated index l in the equation represents summation over the all three 
components.  For convenience, we postulate that the diffusivity tensor in 
Cartesian coordinates is diagonal, i.e., all the off-diagonal components vanish 
such that , , K11 = Kxx K22 = Kyy K33 = Kzz , and Kij = 0 for i ≠ j .  Then the 
governing atmospheric diffusion equation (when the turbulent flux terms are 
expressed with the eddy diffusion theory) is: 
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 (a)             (b)              (c)                          (d)                                     (e)            (f) 
 
The terms in Equation (19) are summarized as follows: 

(a) time rate of change of pollutant concentration; 
(b) horizontal advection; 
(c) vertical advection; 
(d) horizontal eddy diffusion (diagonal term); 
(e) vertical eddy diffusion (diagonal term); 
(f) emissions, loss of pollutant at boundaries, and effects of chemical 

reactions. 
 
 
3 Analytical Solutions for Ideal Atmospheric Conditions 
 
The governing atmospheric diffusion equation, Eq. (19), can only be solved with 
a numerical technique.  Analytical solutions are available under special 
simplifying assumptions.  In the natural Cartesian coordinate where the wind is 
assumed to blow towards the positive x-axis (i.e., u = U, v = 0 ) and the vertical 
velocity is negligible (w ), the governing equation for a trace species is 
simplified as: 
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in which Boussinesq approximation and incompressible flow assumptions were 
applied.  Analytical solutions to Eq. (20) and its simplified form are discussed in 
Hanna et al (1982), Pasquill and Smith (1983), Seinfeld (1986), Tirabassi et al. 
(1986), and Arya (1999).  One common method for obtaining an analytical 
solution is reducing the dimensionality of the problem.  A two-dimensional 
solution for ground-level sources and a solution valid for linear profiles of Kzz  
can be found, for example, in Calder (1949) and Rounds (1955).  Smith (1957) 
found a solution for elevated sources with U and Kzz  profiles following Schmidt’s 
conjugate power law: 
 

 U = Ur (z / zr )α      (21) 
 

 Kzz = Kzr (z / zr )
β     (22) 

 
in which the powers of momentum profile and eddy diffusivity strictly satisfy the 
conjugate relationship α + β = 1.  Ur  and Kzr  are wind speed and eddy 
diffusivity, respectively, at the reference height zr .  Yeh and Huang (1975) and 
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Demuth (1978) obtained more general analytical solutions.  They considered a 
steady state condition with accompanying boundary conditions 
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where he is the final effective height of the emissions (i.e., height of pollutant 
after plume rise), and h is the depth of the PBL, and  is the source term.  We 
assume that atmospheric dispersion along the x-axis (stream-wise diffusion) is 
negligible in comparison to the transport term: 
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This assumption has been challenged recently by a few researchers.  For example, 
Du and Venkatram (1998) have studied the effect of stream-wise diffusion on 
ground-level concentration.  They found that the neglected term increases the 
dispersion rate to produce concentration decrease with distance following –2 
power law (i.e., σy

2 ∝ x2 ) instead of –3/2 (i.e., σy
2 ∝ x3 / 2 ), which is predicted by 

the one-dimensional formula for the unstable boundary layer.  Results from the 
wind tunnel experiment by Raupach and Legg (1983) also support the –2 power 
law.  However, for the purpose of deriving analytical solutions, the assumption in 
Eq. (24) is used here.  For convenience, the crosswind-integrated concentration is 
defined as 
 

 ϕ y (x,z ) = ϕ (x,y,z)dy
−∞

∞

∫     (25) 

 
With the power-law expressions of wind and eddy diffusivity of Eqs.  (21) and 
(22), but without the strict conjugate assumption, Yeh and Huang (1975) obtained 
a ground level crosswind integrated concentration for the caseh : → ∞
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where 

 λ = α − β + 2      (27a) 
 

 ν = (1 − β )/ λ      (27b) 
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 γ = (α +1)/ λ      (27c) 

 
 η = (α + β ) / λ     (27d) 

 
 ω = β −α      (27e) 

 
and Γ denotes the Gamma function. 
 
With a finite mixing height (i.e., h < ∞ ) and for a plume within the PBL (i.e., 

), the steady state solution is (Demuth, 1978) he < h
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where 

R = he / h       (29a) 
 

p = (1 − β) / 2      (29b) 
 
In Eq.(28), Jγ  represents the Bessel function of the first kind of order γ, and σγ ( i )  
(i=1,2,…) are its roots, i.e., Jγ (σγ ( i) ) = 0 .  The solutions given by Eqs. (26) and 
(28) represent the ground-level concentrations (i.e., z = 0).  The elevated 
crosswind integrated concentrations ϕ y (x,z ) for the caseh → ∞  is derived by 
Huang (1979): 
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where I−ν  is the modified Bessel function of the first kind of order –ν. 
For a finite mixing height (h < ∞ ), the crosswind-integrated concentration is 
obtained from Demuth (1978), giving 
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Tirabassi et al. (1986) verified, analytically and numerically, that as , the 
limit of Eq.(30) and (31) converges to Eq.(26) and (28), respectively; and that as 

, the limit of Eqs.(28) and (31) gives Eqs. (26) and (30), respectively. 

z → 0

h → ∞
 
These formulae, Eqs. (30) and (31), deal with the crosswind integrated 
concentration ϕ y .  To calculate the three-dimensional concentration, ϕ (x, y,z) , 
horizontal diffusion needs to be included.  Let’s assume that the crosswind 
diffusivity is of the form 
 

 Ky = U(z ) f (x) =
U(z)

2
dσ y

2

dx
    (32) 

 
where σy  is the standard deviation of lateral dispersion.  Eq. (32) can be obtained 
by relating the Fickian diffusion coefficient with the Gaussian dispersion (e.g., 
Arya, 1999) with the help of Taylor's Hypothesis.  Then the solution is 
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The formulae above have been incorporated into an organized computer package 
KAPPA-G (Tirbassi et al., 1986), which allows computation of three-dimensional 
steady-state simulations as proposed by Huang (1979). 
 
Table 1 provides a few other analytical solutions of the Eulerian dispersion 
equation for simplified meteorological and boundary conditions.  They can be 
used to study characteristics of simplified advection and diffusion equations and 
to verify numerical implementation of Eulerian dispersion models. 
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Classification 

 
Equations and Boundary Conditions (B/C) 

 
Solution 

 
References 

1-D, time-
dependent, 
constant K, no 
wind, 
instantaneous 
area source 

∂ϕ
∂t

= K
∂2ϕ
∂x2

, with K = Ko  (constant). 

B/C: ϕ → 0  as t → ∞  ∀x  
        ϕ → 0  as t → 0  all except x=0. 

∞
ϕ dx = Qia−∞∫ , instantaneous area source (over y-z plane) 

 

ϕ =
Qia

(4πKot)
1/ 2 exp[−

x 2

4Kot
] 

 
 

 
Hanna et al. 
(1982) 

3-D, time-
dependent, 
constant K, no 
wind, 
instantaneous 
point source 

∂ϕ
∂t

= Kxo
∂ 2ϕ
∂x2 + Kyo

∂ 2ϕ
∂y2 + Kzo

∂ 2ϕ
∂z2

, with constant K.  

B/C: ϕ → 0  as t → ∞  ∀(x, y, z)  
        ϕ → 0  as t → 0  all except (x, y, z) = (0,0,0) . 

∞∞∞

ϕ dxdydz = Qip
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−∞
∫
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∫ , instantaneous point source 
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Hanna et al. 
(1982) 

2-D, time-
independent, 
variable U and 
K,  continuous 
ground-level 
line source 

U
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=
∂
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(Kz
∂ϕ
∂z

)  

B/C: ϕ → 0  as  x, z → ∞  and ϕ → ∞  as x, z → 0  
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, ∀x > 0 instantaneous line source, given 

Kz = K1(z / z1)
n  and U = U1(z / z1 )m  
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Roberts (1923), 
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(1982) 

3-D, time-
independent, 
constant U, 
variable K, 
continuous-
point source at 
height z=he 

U
∂ϕ
∂x

=
∂

∂x
(Kx

∂ϕ
∂x

) +
∂
∂y

(Ky
∂ϕ
∂y

) +
∂
∂z

(Kz
∂ϕ
∂z

) 

Kx = αUx , Ky = βUx , and Kz = γUx  
B/C: ϕ → 0  as  x, y, z → ∞  and ϕ → ∞  as x, y, z → 0  
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4 Numerical Solution Methods 
 
Numerical methods allow the computation of approximate solutions using an 
integration technique such as the operator splitting (fractional time steps) or a 
global implicit method with a spatial approximation method such as finite 
difference or finite element method.  Other discretization methods such as 
spectral methods, boundary element methods, and particle methods are 
occasionally applied in computational fluid dynamics, but are not frequently used 
in mesoscale Eulerian dispersion models and thus will not be discussed. 
 
4.1 Grid-Volume Averaged Atmospheric Diffusion Equation 
 
A control volume approach is commonly used in atmospheric modeling.  Using a 
control volume approach, the physical law governing the problem (i.e., the 
conservation principle) is examined.  This principle is, then, applied to a control 
volume around the node.  For example, in air quality modeling, the atmospheric 
continuity equation is written for each control volume by establishing a mass 
balance.  It is important to note that, in this approach, the discrete nature of the 
finite difference method is recognized at the outset.  Finally, a mathematical 
statement of the physical conservation principle is obtained in a way somewhat 
similar to the procedures used to derive the partial differential equations. The 
control volume approach is relatively simple when regular grids are used.  In this 
case, the choice for the control volume is simply the grid cell itself.  However, if 
nodes are to be placed at the boundaries of the domain, then the boundary cells 
must be a certain fraction of the interior cells (e.g., 1/2 or 1/4 for an equal spacing 
of the nodes).  In the case of unequal spacing nodes the situation is more 
complicated, and therefore it is customary to write special finite difference 
equations at the boundary of domain.  However, no limit is taken for shrinking the 
control volume to a point. 
 
We apply volume averaging represented in Eq. (10) to the diffusion equation for 
trace species, Eq. (19), to obtain 
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where the off-diagonal terms were neglected for simplicity.  For example, a 
derivative of the volume average can be approximated by the finite difference 
scheme as 
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The volume averaged pollutant flux is further approximated by 
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where the wind components are defined at the cell interfaces.  This type of two-
dimensional staggered distribution of scalar and vector components is referred to 
as the Arakawa-C grid (Mesinger and Arakawa, 1976) and is often used in 
Eulerian modeling for solving the flux-form transport equations like Eq. (34). 
 
4.2 Numerical Solution Techniques 
 
The operators in Eq. (34) resulting from the discretization of the atmospheric 
diffusion equation are three-dimensional.  Incorporating the approximations like 
Eqs. (35) and (36) in the spatial derivatives and applying temporal derivative like 
the Crank-Nicholson method (e.g.,  Pielke, 1984), Eq. (34) is reduced to a 
nonlinear algebraic equation involving a sparse matrix as an operand.  Usually it 
is extremely expensive to solve the nonlinear algebraic equation with very large 
rank (for typical atmospheric diffusion problem, when the three dimensional 
problem is solved simultaneously, the rank is of order of 106).  Furthermore, the 
characteristic time scales associated with the chemical production and the 
turbulent diffusion rates in the atmosphere are very small (usually a few seconds).  
Thus, very small time steps are required to get accurate solutions.  On the other 
hand, multi-day simulations are typically performed in many applications of 
atmospheric models.  Inversion of the large matrix thousands of times, at every 
time step, is costly despite of the rapid development of computer capability now 
and in near future.  The required computational resources for comprehensive air 
quality models that include various other atmospheric processes in addition to the 
transport and diffusion usually dictates the use of operator splitting techniques. 
 
4.2.1 Operator and Time Splitting 
 
The various physical processes in the Eulerian dispersion equation have different 
mathematical properties.  Because they impose different restrictions in the 
numerical solutions, it is difficult to evaluate if a suite of numerical schemes for 
the physical processes is accurate and stable.  When a time splitting technique is 
applied, the system is split into a number of simpler subsystems, which can be 
solved consecutively one at a time.  When applying the splitting method, equal 
time steps are not required for each of the subsystems.  A relatively long time step 
may be used for the subsystem governing a slow process, while many smaller 
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steps calculate faster processes.  In Eulerian dispersion modeling, the advection 
and diffusion and chemistry processes, for example, are separated, and they can 
be further split into one-dimensional operators using local approximations.  The 
three-dimensional problem is thus reduced to a sequence of one-dimensional 
problems, which Yanenko (1971) called the method of fractional steps.  The time-
splitting method is also often called as the operator-splitting method (Otey and 
Dwyer, 1978).  Furthermore, each component can be solved using different 
numerical techniques suitable to the characteristics of the described physical 
problem. 
 
Operator splitting methods have been used in most air quality models, primarily 
due to different time steps allowed for physical processes representing 
atmospheric transport and chemistry (McRae et al., 1982).  However, to best 
maintain numerical accuracy, the time splitting method requires detailed 
understanding of the temporal scales of individual physical processes to 
determine proper sequence of operator calls. 
 
4.2.2 Global Implicit/Explicit Method 
 
An alternative to the splitting methods is a global implicit method.  With this 
method, all the physical processes are parameterized and discretized over the 
entire three-dimensional grid simultaneously.  Because all the processes are being 
simulated at the same time and has to meet the Courant number requirement of 
the fastest process, the global implicit method requires large computational 
resources.  Also, it is difficult to know if the solution converged due to the 
numerical damping associated with the numerical algorithms.  The method is 
difficult to implement because of the weak modularity.  The fact that the time step 
splitting demands more thought and effort for arranging the computational 
sequence of the operators is counterbalanced by the fact that the resulting 
simulations are generally faster than those using global-implicit methods. 
 
To overcome this limitation, an implicit-explicit (IMEX) method has been 
suggested (Ascher, et al., 1995; Knoth and Wolke, 1998a, b).  In the IMEX 
approach the (horizontal) advection is handled explicitly with a large time step 
and act as an artificial source in the coupled implicit integration of all the vertical 
transport processes (Knoth and Wolke, 1998b).  For the implicit part of solution, 
either semi-implicit Runge-Kutta methods or a second order explicit-implicit 
backward differentiation formula (BDF) can be applied.  The resulting numerical 
scheme can be very efficient while removing the arbitrary determination of the 
sequence of operators associated with a time-splitting method.  A thorough review 
on the numerical time integration methods for photochemical air quality models 
with a large number of chemical species in three space dimensions is provided by 
Verwer et al. (1998). 
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4.3  Spatial Approximation and Discretization Methods 
 
The equations governing atmospheric dynamics and chemistry are nonlinear 
partial differential equations that must be solved numerically.  On a computer 
with a limited amount of memory, the values of the solutions cannot be 
represented everywhere, but only at a limited number of sample points in the 
modeling domain.  The collection of sample points makes up a grid, while the 
individual locations at which the field variables are to be determined are called 
grid points or nodes.  The process of representing a continuum by a finite number 
of points in space and time is known as discretization. 
 
In this section, two common methods for spatial discretization are discussed—the 
finite difference method and the Galerkin method.  The way in which the 
discretization is done is fundamentally different in each method.  These 
discretization methods are fundamentally different and have major differences in 
their formulations. 
 
4.3.1 Finite Difference Method 
 
The most common numerical integration procedure for atmospheric modeling has 
been the finite difference method.  In the finite difference method, the region 
being modeled is divided into a finite number of grid cells.  Each of these cells is 
assumed to have a uniform (well-mixed) value for the pertinent dependent 
variable. For this reason, it seems natural that the node should be associated with 
the centroid (geometric center) of the cell.  Note that this is different than the 
finite element method (discussed later), where the nodes are placed at the corners 
of the cell.  With the finite difference method, the derivatives in the governing 
differential equations are replaced by finite difference approximations (for 
example, using a Taylor series expansion) to establish algebraic equations at the 
discrete set of points (usually of order of hundred thousands for atmospheric 
simulations) in space and time.  The computers today can solve such large 
algebraic equations in a relatively short time.  Many Eulerian transport models, in 
particular those with regular grid system, rely on the finite difference for their 
basic discretization method. 
 
4.3.2 Galerkin Method 
 
In the Galerkin method the spatial structure of each dependent variable is 
represented by basis functions.  Suppose that a partial differential equation with 
appropriate boundary conditions is to be solved in a certain domain.  When the 
approximation to the dependent variable(s), which is a sum of the products of the 
time dependent coefficients with the basis functions, is substituted into the partial 
differential equation, it yields a residual (i.e., an error).  The Galerkin method 
requires that the residual be orthogonal to each basis function.  Since the 
orthogonality requirement is expressed as a weighted integral of the residual, the 
Galerkin method is alternately known as the weighted residual method.  In the 
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classical Galerkin method, the weighting functions (i.e., the weights of the 
residual) are chosen from the same space as the basis functions used to 
approximate the dependent variable.  This procedure known as the Bubnov-
Galerkin method is very effective in solving elliptic partial differential equations.  
For hyperbolic problems, more stable solutions are obtained when the weighting 
functions are selected from a space different than the basis functions.  Such 
methods are usually associated with the name of Petrov-Galerkin (Brooks and 
Hughes, 1982).  Recently, other methods have been introduced that may be very 
useful in atmospheric modeling, such as the Taylor-Galerkin method (Donea, 
1984) and the Characteristic Galerkin method (Childs and Morton, 1990). 
 
The two most useful Galerkin algorithms are finite element and spectral methods.  
The finite element method employs simple polynomials that are local (i.e., equal 
to zero except in a limited region), while the spectral method utilizes global basis 
orthogonal functions.  The spectral method is often used in meteorological and 
global modeling.  The introduction of the finite element method into atmospheric 
modeling is more recent.  The finite element method should not always be viewed 
as a weighted residual method.  The latter always leads to equations of integral 
form, which can be obtained by summation of contributions from various sub-
domains.  Similar integral forms can be obtained from the variational method 
when the problem is governed by a variational principle. 
 
In the finite element method the region can be divided into triangular as well as 
rectangular elements.  The nodes are placed at the corners of the elements.  This is 
quite different from the way in which discretization is done in the finite difference 
method.  The dependent variable (e.g., pollutant concentration in air quality 
models) is generally not constant over an element but varies in some prescribed 
manner, depending on the interpolation polynomial (i.e., the basis function) being 
used.  There are several advantages of the finite element method.  The approach is 
readily adapted to the boundaries, especially in the case of irregular grids.  Flux 
type boundary conditions are automatically included in the finite element 
formulation.  The advantage of the weighted residual approach over the mass 
balance approach used in finite differences becomes evident in the presence of 
unstructured irregular grids.  In fact, one of the main advantages of the finite 
element method over other spatial approximation techniques is that the finite 
element method can handle irregular grids routinely.  Often models that use 
Galerkin methods solve the advection-diffusion equation with a global implicit 
method, instead of using the time splitting, to reduce the computational burden of 
minimization of the residual errors repeatedly. 
 
4.4 Grid Structure of Eulerian Models 
 
The accuracy of numerical solution of the atmospheric diffusion equation depends 
heavily on the discretization method.  As discussed earlier, it is customary to treat 
the vertical and horizontal coordinates separately in meteorological models.  
Almost all the atmospheric models use a structured vertical grid system 
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discretized along the vertical coordinate.  Except for models intended to study 
atmospheric phenomena near surface with limited vertical extent, a non-uniform 
vertical grid is usually used.  In general, the grid spacing increases 
logarithmically with height to account for the variation in the air density.  The 
grid spacing can be further modified based on the need for accurate descriptions 
of important dynamics and physics, such as cloud mixing and PBL structure. 
 
In principle, simulations with higher horizontal grid resolutions provide more 
accurate solutions unless there are scale dependencies among physical 
parameterizations used in the model.  However, as will be shown later, decreasing 
the grid spacing increases the number of cells and requires a reduced time step 
size to achieve stable computational results.  Practical limitations in computer size 
and speed prohibit the use of uniformly high spatial resolution appropriate for the 
smallest scales of interest.  Two such methods of increasing resolution are nested 
approaches with a structured uniform grid and an unstructured grid.  In the 
following, we describe issues associated with these two contrasting approaches. 
 
4.4.1 Structured Grid and Nesting 
 
Most atmospheric models rely on regular (structured and uniform) horizontal  
grid systems for simplicity.  To obtain accuracy of simulations for a desired area, 
a grid nesting technique can be used.  Grid nesting involves the sequential 
placement of multiple finer-scale meshes in desired regions of the domain so as to 
provide increased spatial resolution locally.  Nesting can be divided into static and 
dynamic nesting.  In the static nesting, the resolution and size of each grid are 
determined a priori and remain fixed throughout the model simulation.  In the 
dynamic nesting, grids may be changed following changes in the control 
parameters during the simulation to obtain efficient yet accurate solutions.  The 
static nesting approach is illustrated in Figure 4.  The spatial resolution of the 
coarse grid is usually an integer multiple of that of the fine grid.  First, the coarse 
grid solution is marched forward one time step.  This solution provides initial and 
lateral boundary conditions (both concentration and flux) to the fine grid solution 
that is advanced at a smaller time step (usually an integer fraction of the time step 
of coarse grid).  It is customary to set the time step ratio between the coarse and 
fine grids to equal the grid size ratio between the same two grids in order to retain 
the numerical accuracy at the same order of approximation.  After multiple steps 
of the fine grid computations are completed to catches up with the coarse grid 
solution, the former may or may not be used to update the latter (i.e., two-way vs. 
one-way nesting).  Although dynamic nesting with a structured grid is used in 
some atmospheric models, it may not be efficient for dynamic grid adaptation 
because the fine nest grid generation requires a high degree of user interaction 
and user expertise. 
 
There are a few shortcomings of using grid nesting.  One is the tendency for 
propagating dispersive waves to discontinuously change their speeds upon 
passing from a mesh to the next and to reflect off the boundaries of each nest due 
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to an impedance mismatch across the mesh boundaries.  In addition, when dealing 
with chemical reactions, there is a problem of species mass conservation across 
the grid interface because the chemical production and loss of trace species are 
nonlinearly related with the ratios of mixtures, which in turn depend on the grid 
size.  The mass of certain species (e.g., radicals) may no longer be conserved 
because, when advancing the fine grid solution, the non-linear chemical reactions 
happen in addition to transport.  However, the mass of the basic chemical 
elements such as sulfur, nitrogen, and carbon must be conserved.  This 
requirement is often handled by re-normalization of the concentration of each 
species based on the assumption that the ratio of the species mass to element mass 
will remain the same before and after the correction. 
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Figure 4.  Static grid nesting example.  Multi-level nesting is capable 
through a natural extension of the single static grid nesting.  ∆T  and ∆  
represent computational time steps of coarse and fine nest runs, 
respectively.  In two-way nesting, the concentration from the fine nest grid 
simulation (C

t

FG) is used to update the coarse grid concentration (CCG). 
 
4.4.2 Unstructured Grid 
 
A few atmospheric models with unstructured horizontal grids have been 
developed recently.  For example, a dynamically adapting weather and dispersion 
model, the Operational Multiscale Environmental Model with Grid Adaptivity 
(OMEGA) (Bacon et al., 2000) utilizes an adaptive unstructured grid technique 
that allows continuously varying horizontal grid resolutions ranging from 100 km 
down to 1 km.  OMEGA can adapt its grid both statically to topographical 
features and dynamically to different adaptivity criteria such as fronts, clouds, 
hurricanes, and plumes.  Also, Ghorai et al. (2000) solve the three-dimensional 
atmospheric dispersion equation using a time dependent adaptive grid technique 
based on tetrahedral elements.  The unstructured grid technique is rather new to 
the atmospheric science community.  In many fields of engineering applications, 
the unstructured grid method has been in use for more than a decade due to its 
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efficiency in the modeling of irregular domains.  The flexibility of unstructured 
grids and their ability to adapt to transient physical phenomena are the features 
that give unstructured grid algorithms for partial differential equations their great 
power. 
 
Grid refinement techniques can be subdivided into two basic categories.  The first 
includes methods in which grid points are added locally to the computational 
domain as the calculation proceeds, or finite elements are subdivided locally, to 
provide increased spatial resolution based on predetermined physical criteria.  
The second category of refinement technique involves methods that redistribute a 
fixed number of grid points so as to provide locally increased resolution and thus 
an improved solution in certain regions of the domain.  The static grid 
adaptability of an unstructured grid allows reduction of the total number of cells 
necessary to correctly simulate underlying physics, such as caused by the 
topography and land use.  Further, a dynamic grid technique allows refinement of 
grids to resolve important physical events and features as the simulation is in 
progress.  Bacon et al. (2000) summarize the dynamic grid adaptation process 
with four major steps: 1) at a predetermined time step specific variables or their 
gradients are evaluated to see if they meet the adaptivity criteria, 2) the mesh is 
refined where these criteria are satisfied, 3) the physical variables are interpolated 
to new cell centers, and finally 4) the mesh is coarsened where the criteria are not 
met.  Setting the right criteria for adaptation is very important.  There is a 
significant cost associated with a grid adaptation; hence, the ideal criteria are 
those that require minimum computational effort to evaluate yet indicate key 
regions requiring additional resolution. 
 
 
5 Numerical Algorithms for Advection 
 
In this section, we present advection separately from diffusion processes 
following the fractional time splitting concept.  The algorithm discussions are 
mostly based on finite difference schemes on a structured grid system.  In general, 
two transport processes are considered in atmospheric models: convection (or 
advection) and (turbulent) diffusion.  Convection can only transport a disturbance 
in the direction of wind velocity.  Turbulent diffusion, on the other hand, can 
spread a disturbance in every direction.  The atmospheric continuity equation that 
governs pollutant transport and chemistry describes these transport mechanisms 
mathematically.  Horizontal transport in the atmosphere is advection dominated.  
Numerical approximations to this equation have the transportive property, i.e., 
d q / dt = 0 .  In Eulerian air quality models, the volume-integrated quantities for 
each cell are subject to following conservation equation: 
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The source term in the continuity equation ρQ  represents the error that might 
exist due to the mass-inconsistency in the input wind and density fields or 
deficiencies in the numerical scheme.  Imposing the necessary condition 

 for the numerical transport under the possible mass consistency 
error, we obtain the following flux form conservation equation (Byun, 1999b). 
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5.1 Numerical Advection Algorithms 
 
There have been many studies on the numerical advection algorithms used in air 
quality models (e.g., Chock and Dunker, 1983; Chock, 1985, 1991; Rood, 1987) 
and the list is continuously growing.  Numerical advection has attracted so much 
attention because it is the difficulty in obtaining a good numerical solution under 
variety of wind conditions and source distributions.  Discretization of the 
hyperbolic equation generates only a finite number of Fourier modes that travel at 
different speeds and sometimes leads to destructive interference that causes 
interpretation of signals at different wavelengths.  Various errors introduced by 
advection algorithms have historically been a major source of inaccuracy in air 
quality models.  A classical problem in numerical analysis is to construct an 
advection scheme for a grid system that is not specially oriented to follow the 
characteristics of the solution.  While it is essential to maintain conservative and 
transportive properties in the equations, the scheme must also satisfy stability and 
accuracy requirements.  A signal being advected along the line of flow may also 
spread in a direction normal to the line of flow.  This diffusion is referred to as 
artificial diffusion because it is inherent with the lack of numerical consistency in 
the numerical solutions. 
 
The numerical algorithm is described with the one-dimensional version of the 
advection term with u , = U
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where we replaced ϕ i  with ϕ for the simplicity in the expression.  Eq. (39) is the 
flux (or conservation) form and the quantity Fx = Uϕ  is defined as the one-
dimensional constituent flux.  The flux form is a natural choice here because it is 
based on the continuity equation without any assumptions on the atmospheric 
dynamics.  Discretization of the flux form of Eq. (39) results in 
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where  and  denote the advective fluxes through the interfaces of cell 
j,  is the time step, and ∆

Fj +1/ 2
n Fj −1/ 2

n

∆t xj  is the cell length in the same metric space that the 
velocities are defined. 
 
While it may appear that we have lost some coordinate system generality, 
multiplication of Eq.(40) by the cell's volume to yield cell mass, now leads us to a 
geometrical picture of the advection process that transcends the preceding 
mathematical complexity and leaves us with the simple algebraic equation: 
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n = ∆xjϕ j
n  and .  Basically, the mass in cell j at the 

end of the time step is the mass at the beginning of the time step plus the mass 
increment entering the cell from its left-hand neighbor minus the mass increment 
passed along to the cell's right-hand neighbor (assuming all cell-face velocities 
are positive).  The complexity is now buried in how we define the mass transfers, 
∆M, and the CFL numbers, β, at the cell faces.  For a temporally-explicit (i.e., 
forward-in-time) scheme, and a positive value of U
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Fridlich-Lewy (CFL) as: 
 

j
jj x

tU
∆
∆

= ++ 2/12/1β      (42) 

 
Should U  be negative, the appropriate 2/1+j ∆x  to be considered would be that of 
the upwind cell ∆xj +1

M

.  Similarly, the cell to be considered for the mass transfers 
is always the upwind cell, so for the case of the positive value of U , we 

define the current ∆  as: , where  can be a high-
spatial-order definition of the mass distribution within the cell or reduces to the 
cell mass  itself for the case of low-order, Donor-cell treatment or when 
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2/1+jβ = 1.  Thus, in the simple case of Donor-cell advection, the fraction of a 
cell's mass that is transferred across a face is just equal to the outgoing CFL 
number at that face.  To maintain numerical stability and to accommodate other 
physical changes such as emissions input in a synchronized way, the time step of 
1-D advection should satisfy the CFL condition for the whole domain: 
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The only geometrical factor not considered in this view is the local spatial 
variation of the map factor within the particular cell being depleted.  Though this 
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gradient term is present in the formulation of transport, these gradients are mostly 
discarded in finite difference implementations as being "higher-order" 
differentials.  However, as they relate simply to the "shape" of the cell (i.e., to the 
cell being non-square), they may be easily included by a multiplicative 
"keystoning factor".  Thus, in the two-dimensional transport example we now 
allow the cell to be trapezoidal in shape with differing transverse widths,  
and , at the right and left faces and correct the CFL with the easily 
visualized and derived, multiplicative "keystoning factor", expressed as, for 

2/1+∆ jy

2/1−∆ jy

2/1+jβ > 0: 
 

 
2/12/1

2/1
2/12/12/1 )1(2

−+

+
+++ ∆+∆

∆
−+=

jj

j
jjj yy

y
K ββ    (44) 

 
Using this corrected CFL, 2/1+jK 2/1+jβ , means that advection will now transfer 
the correct fraction of cell area or mass destined to be transferred rather than the 
correct, x-directional fraction of cell length.  It is interesting that by folding the 
length-scale parallel to the wind component into the face CFL and the aerial and 
vertical map factors into computation of the total cell mass, one is then able to 
proceed with the development of a sophisticated, mass-conservative, advection 
scheme for an arbitrary metric grid with simple arithmetic. 
 
Although the Donor-cell advection scheme, which assumes a constant 
concentration distribution within each cell, has several necessary properties (i.e., 
it is mass-conservative, positive-definite, and transports material at the correct 
speed), it is extremely diffusive.  The many dozens of pollutant advection 
schemes developed over the past decades attempt to minimize this numerical 
diffusion of material by employing a more accurate description of the 
concentration distribution within each cell.  This is accomplished generally by 
describing the in-cell distribution with some higher-order polynomial and basing 
the coefficients of that polynomial on local or global variations of the gridded, 
average concentrations.  For example, some schemes utilize a fairly local 
definition of a first-derivative, such as: ( ) xx jjj ∆−= ++ 2/)(/ 11 ϕϕ∂ϕ∂ , whereas 
other schemes would call upon more distant point pairs (e.g., (j+2,j-2), (j+3,j-3), 
and beyond) to compute this first derivative and/or higher derivatives, and are 
often referred to as higher-order-accurate or 'global' derivative definitions, those 
the term global is sometimes reserved for schemes where derivatives are 
computed based on implicit relationships rather than on an explicit, truncation-
error-reducing series involving the more distant grid point information.  The 
virtue of these higher-order polynomial schemes that involve various definitions 
of the spatial derivatives is that they can accurately capture realistic and dramatic 
spatial variations in ϕj within in the cell j; however, such dramatic variations can 
also include undesired concentration overshoots and undershoots (e.g., Gibbs 
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ringing, negative concentrations, antidiffusive instability) that must be suitably 
blocked ahead of time or filtered out after the fact. 
 
In Eulerian dispersion modeling, it is essential that an advection scheme be mass-
conservative, but we have seen that this is guaranteed by the flux-formulation and 
not by the details of the advection scheme itself.  If non-linear chemistry is to be 
modeled as well, then the scheme must be positive-definite (i.e., not permitting 
negative concentration solutions that would cause the chemical solver to add to 
this unphysical behavior) and should also avoid any excessive erosion of a 
uniform background concentration.  Beyond these 'musts', the importance given to 
minimizing various uncertainty measures (e.g., root-mean-square error, maximum 
error, average error, sum of concentrations squared), or such measures applied to 
log(ϕj) or any measure as a function of the wavelength/shape of the test 
distribution, still remains rather subjective and, as a result, has inhibited 
converging on an algorithm that could reasonably be called the 'best'.  For 
example, were it not for an abysmal response to single point-source emissions, 
few would contest the superiority of spectral methods in providing very high-
fidelity response to longer wavelength distributions; however, computational 
expense is also a factor that weighs into this subjective judging, and this factor 
weighs against the spectral techniques.  In addition, most advection tests are 
performed on uniform, constant thickness grids.  An advection scheme should 
also yield smooth, accurate non-negative solutions over differently scaled 
portions of irregular grid systems.  Similarly, sharp concentration gradients or 
horizontal variations in the vertical dimensions of grid cells should not lead to 
accelerations or decelerations of material in the horizontal direction (see Table 4 
for the algorithms of several advection schemes often used in Eulerian dispersion 
modeling). 
 
Performance characteristics of these advection schemes should also be studied for 
realistic atmospheric conditions rather than just for over-simplified flows and 
idealized distributions.  The traditional long-wave propagation tests, such as the 
cosine-hill rotation test case (Crowley, 1968) tend to show an advection scheme at 
its best; however, adequate short wavelength performance is also extremely 
important in Eulerian dispersion models.  One of the most stringent tests involves 
the two-dimensional transport and diffusion of emissions from a single-grid 
source (Yamartino, 1993).  This situation often arises in air quality modeling 
despite the fact that the maximum resolution of transport algorithms is limited to 
two grid cell lengths (i.e., λ = 2∆x  waves are very rapidly diffused).  Such test 
problems are often neglected in evaluating advection algorithms, but later become 
inevitable in actual simulations.  Thus, identification of suitable evaluation cases 
is an issue just as important as developing advection schemes with acceptable 
characteristics. 
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5.2 Artificial Diffusion 
 
It is well documented that numerical advection schemes are associated with the 
major sources of inaccuracy, particularly from artificial numerical diffusion and 
dispersion.  Usually, low-order schemes display considerable diffusive 
dissipation.  The amount of artificial diffusion introduced by low-order numerical 
algorithms can easily outweigh physical diffusion.  On the other hand, higher-
order schemes are dispersive and generate spurious oscillations that can even lead 
to instabilities.  The more popular algorithms try to find the best compromise 
between these two sources of inaccuracy to arrive at an acceptable solution.  
What is meant by acceptable is still a major topic of discussion among 
atmospheric modelers. 
 
The numerical dispersion can be easily understood by analyzing the one-
dimensional version, Eq. (39).  With a central first-order finite-difference scheme 
and for a constant wind speed U, we obtain 
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where we used a central spatial differencing.  Analysis of the truncation terms 
shows that the error ε generated by the approximation of using Eq. (45) instead of 
Eq.(39) is 
 

   TOH
xx

tUxU ..)1(
2 2

2

+
∆
∆

−
∆

=
∂

ϕ∂ε  

 

 TOH
x

DN ..2

2

+=
∂

ϕ∂      (46) 

 
which is a diffusion-type term with the associated diffusivity  equal to DN
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where xtU ∆∆= /β  represents the CFL number (signed) and H.O.T. denotes the 
higher-order terms.  In general, the even-ordered derivatives in terms of x 
represent the diffusion errors (i.e., loss of peak magnitude) while the odd-ordered 
derivatives represent the dispersion error (displacement of peak location in the 
signal, or phase-speed error).  This analysis demonstrates that the numerical 
dispersion with the central difference scheme is proportional to the grid size ∆x 
and is dependent on the Courant number of the flow.  Different advection 
algorithms exhibit different numerical diffusion characteristics. 
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5.3 Mass Correction after Numerical Advection 
 
A fundamental requirement for the numerical transport algorithms is the 
conservation of trace species in the domain.  A conservative numerical advection 
algorithm can conserve trace mass when driven by the mass consistent wind and 
density fields.  However, the meteorological data used in trace transport are often 
mass inconsistent.  Simulating meteorological conditions for a limited area like 
urban or regional scale, the total air mass in the modeling domain is subject to the 
inflow, outflow, top, and bottom boundary conditions imposed by large synoptic 
scale weather systems and surface exchanges of heat and moisture.  Furthermore, 
the time splitting of the original three-dimensional transport into a sequence of 
one-dimensional solutions introduces cross-term errors that must be corrected.  
To take into account the residual (error) term as part of the numerical transport 
process, we must solve the following correction term as a part of the numerical 
transport. 
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Ideally, Q ρ  must vanish everywhere in the computational cells.  If not, an 
algorithm that theoretically conserves mass may fail to conserve trace species 
mass in the application.  Byun (1999b) and others proposed to handle the mass 
inconsistency by forcing conservation of mixing ratio (instead of mass) during the 
advection process.  The undesirable effects of the mass-inconsistent error can then 
be corrected with: 
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where superscripts T and cor represent values after transport (advection) and after 
correction, respectively.  An adequate correction scheme conserves the trace 
mixing ratio even if wind and density fields are not mass consistent.  It is given 
as: 
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where ( )intρ  is the volume-weighted density interpolated in time at the integration 
time step. 
 
For a limited-area atmospheric model where air mass in the model domain is not 
conserved, the mixing-ratio conservation scheme is demonstrated to be useful for 
photochemical air quality simulations where chemical production and loss terms 
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are computed using molar mixing ratio.  However, one should be reminded that 
the above approach only fulfills a necessary condition, but not sufficient 
condition, for mass conservation.  Therefore, before applying this final correction 
step, the mass inconsistency in the meteorology data must be minimized such as 
using a variational wind field adjustment scheme.  The correction scheme fixes 
mixing ratio conservation errors due to the time splitting, numerical algorithms, 
and the mass inconsistent meteorological data input altogether.  It does not, 
however, improve the inherent properties of a numerical advection scheme such 
as monotonicity, or numerical diffusivity.  It must be emphasized that time 
splitting of advection into horizontal direction and vertical direction is for the 
convenience of obtaining numerical solution.  The three-dimensional advection 
and the mass adjustment are the necessary steps to simulate inseparable 
atmospheric advection process. 
 
 
6 Horizontal Diffusion Algorithm 
 
For atmospheric modeling the three-dimensional diffusion is often decomposed 
into horizontal and vertical directions because the two are subject to different 
distinctly different atmospheric processes.  The horizontal mixing is influenced 
by the heterogeneous atmospheric conditions in a grid cell and is frequently 
parameterized with the eddy-diffusion theory.  From Eq. (34) in which the off-
diagonal terms are neglected, the horizontal diffusion equation is given as: 
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The horizontal diffusion is often solved with an explicit finite difference method 
to minimize memory requirements in Eulerian transport models with a 
sufficiently small time step to ensure the positivity of solution.  In Eulerian air 
quality modeling, eddy diffusivities are usually not distinguished in two different 
horizontal directions (i.e., Kxx = Kyy = KH ).  Then, the problem is reduced to 
parameterization of the eddy diffusivity to reflect the sub-grid scale diffusion. 
 
6.1 Horizontal Diffusivity Estimated from the Lagrangian Dispersion 

Theory (from Section 6.3.2 of Zannetti, 1990) 
 
Estimation of the horizontal diffusivity presents several intriguing aspects.  It is 
often (and perhaps, improperly) assumed that KH ≈ Ky , where Ky  is the 
crosswind eddy diffusivity (i.e., with wind blowing along the positive x-axis).  Ky  
is not necessarily equivalent to Kyy  used for the Eulerian modeling exactly.  For a 
plume originated at x = 0 and carried by the wind along the x-axis, Ky  is related 
through Eq. (32) to the standard deviation of σy  of the crosswind plume 
concentration spread.  For a short travel time ( t = x /U (z)  < TL ) 
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where c is a constant that depends on the distance from the source and TL  is the 
Lagrangian turbulence time scale, which is the characteristic time scale 
determined by the auto-spectral correlation function following the movement of 
plume (with  typical value of 100 sec for convective PBL).  For a travel time 
much larger than the Lagrangian time scale (i.e., t >> TL), the Lagrangian 
dispersion theory predicts that: 
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To estimate the horizontal eddy diffusivity σy  must be estimated from 
meteorological measurements.  For example, the horizontal diffusion in a grid 
model is related to the long-range transport and diffusion of a plume from a point 
source at the ground surface (Pasquill, 1976): 
 

)( xfxy ∆∆= θσσ      (54) 
 
in which σθ  is the standard deviation of the horizontal wind direction expressed 
in radians.  The empirical function f (∆x)  is specified following  Hanna et al. 
(1977); Irwin (1979); and Arya (1999): 
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Eq. (55) represents a curve fit to Table 2. 
 

Table 2.  Pasquill’s (1976) empirical function )( xf ∆  
∆x  (m) 0 100 200 400 1000 2000 4000 10000 >10000 
f (∆x)  1.0 0.8 0.7 0.65 0.6 0.4 0.4 0.33 33.3(∆x)1/ 2  

 
 
The horizontal eddy diffusivity is: 
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As expected, Ky  is independent of the grid size for large downwind distance 
(which corresponds to the grid size in Eulerian models). 
 
For ∆x > 104  m, given typical values of σθ  < 0.5 radian and U  < 10 ms-1, Eq. (56) 
gives Ky  values one to two orders of magnitude lower than the bottom range of 
KH  = 104 to 107 m2 s-1 currently used in most long-range models and considered 
to be the best values to fit actual measurements.  This inconsistency can be traced 
back to the implicit assumption of the Lagrangian transport that the plume 
trajectory is known exactly and that σy  and KH  characterizes only the horizontal 
growth of plume and not the uncertainty in the plume location.  There are serious 
limitations estimating the Eulerian eddy diffusivity ( KH ) at a certain location 
(x,y,z), for example at the boundary of a grid cell, with the Lagrangian dispersion 
theory.  Different values of Ky  would be required for the pollutant plumes 
traveling from different sources, and therefore, having different travel times.  An 
Eulerian model cannot handle this, because, after pollutants are injected into the 
grid cells, the memory of their different origins is lost.  Actual modeling 
simulations, however, use meteorological wind fields, which contain a large 
degree of uncertainty when used for trajectory computations.  Therefore, it is not 
surprising that actual model calibration tests suggest large values of KH .  This 
indicates that horizontal diffusion needs to be artificially enhanced for the model 
to incorporate the uncertainties in the wind fields. 
 
To visualize the above considerations, consider a simple example shown in Figure 
5, in which the contributions of three air pollution sources (S1, S2, and S3) at the 
receptor R are evaluated through dispersion modeling with large KH  values.  
Although the model largely overestimates horizontal diffusion, it provides a total 
concentration value at R (the sum of three dashed curves) that is quite similar to 
the measured value (on the solid curve) due to compensation of errors in diffusion 
and wind fields.  The model is, in a way, “validated”, but its use for evaluating 
emission reduction strategies will provide incorrect results; specifically in the 
case of emission reductions in S1, S3 with insufficient control of S2.  It is true that 
regular fluctuations in wind direction cause the solid plumes in Figure 5 to sweep 
around the azimuth in such a way that they all may envelope the receptor R.  This 
variation of the short-term average wind can sometimes be correctly simulated, 
for long-term averages, by the dashed plumes, which are computed with an 
enhanced horizontal diffusion.  However, wind direction fluctuations often do not 
show regular behavior and therefore, do not support the approximation.  In 
complex terrain, especially, preferred directional patterns play important roles in 
determining plume trajectories, and the artificial enhancement of horizontal 
diffusion for long-term averages may provide incorrect results.  Moreover, if 
nonlinear chemical reactions are used, the formation of secondary pollutants is 
incorrectly computed when the plume is diffused with artificially high dispersion 
rate, since the centerline plume concentration is consistently underestimated. 
 

 



254  Air Quality Modeling – Vol. I 

R

S1

2S

3S

Plume Boundaries
Concent rat ion
Pr o f i les

Average Wind

 
 

Figure 5.  An example of the consequence of overestimating horizontal 
diffusion on the concentration at the receptor R.  Solid lines show the actual 
average plume, while dotted lines show the plumes as simulated by the 
model. 

 
6.2 Other Approaches for Estimating Horizontal Eddy Diffusivity 
 
In an ideal case, the process must represent the effects of physical diffusion on 
pollutant dispersion.  Although our understanding of horizontal turbulence is 
rather limited, appropriate accounting of physically based horizontal diffusion is 
necessary.  We can identify certain types of nonphysical horizontal diffusion such 
as numerical diffusion resulting from the inconsistency (i.e., errors in higher-
order expansion terms) in the advection scheme and artificial diffusion resulting 
from the instantaneous dilution of emissions and concentrations by the finite 
volume of the Eulerian grid cells.  In the past, the horizontal diffusion process 
was often omitted because the numerical diffusion associated with the advection 
algorithm was large.  It is also important to realize that the Eulrian simulation 
takes into account for the genuinely advective characteristics of pollutants. 
 
For example, Smargorinsky’s (1963) horizontal diffusivity algorithm accounts for 
the transport (stretching and shearing deformation) characteristics of wind flows: 
 

    (57) 22/1222 )()(2 xSSK oHT ∆+= ΛΓα
 
where αo ≅ 0.28 and stretching strength (SΓ ) and shearing (SΛ ) strength are 
defined by 
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Because Eq. (57) relies on the grid-scale wind components, it is not suitable for 
estimating the sub-grid scale diffusion not resolved by the provided wind fields.  
Furthermore, for coarse resolution where numerical diffusion is already large, use 
of this formula seems inadequate.  Draxler and Hess (1997) used similar formula 
in the HYSPLIT, a Lagrangian modeling system where numerical dispersion is 
not much an issue. 
 
Yamartino and Machiraju (2000) suggest a method to determine appropriate 
horizontal diffusion coefficients by subtracting the numerical diffusivity already 
accompanying the advection scheme (see above).  Artificial diffusion refers to the 
instantaneous dilution of emissions and concentrations by the finite volume of the 
grid cells.  This instantaneous diffusion has traditionally been accepted as a 
penalty for using Eulerian grid models.  If a few sources contributing to a cell are 
deemed important enough to avoid the instantaneous diffusion, they must be 
treated by either a finer nested mesh to cover the sub-domain of interest, or with a 
plume-in-grid module (see section 1.4) to describe the early dispersion/chemistry 
evolution of pollutants emitted.  The specified horizontal diffusion term in 
Eulerian dispersion models, when combined with the effects of the input wind 
fields, the numerical diffusion of the advection scheme and the instantaneous 
dilution in the grid cell, should best simulate diffusion that is observed in the 
atmosphere.  To achieve this goal, the artificial diffusion and numerical diffusion 
terms must be quantified for each of the advection algorithms.  This is difficult, 
though not impossible, to accomplish because the numerical diffusion 
characteristics of a specific advection algorithm are not only dependent on the 
wave number of the signal but also the CFL number of the transport flow 
(Odman, 1998). 
 
If numerical diffusion dominates, to compensate for the effectively larger 
instantaneous dilution in a larger grid size, eddy diffusivity component 
accounting for the grid size difference, KHN, may be parameterized to counter act 
the numerical diffusivity  to give (e.g., Byun et al., 1999): DN
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where KHf (∆x f ) is a uniform eddy diffusivity at a fixed resolution ∆x f .  In 
Eulerian dispersion models, KHf (∆x f ) of order of 50-2000 m2s-1 is used, 
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depending on the magnitude of ∆x f

1
KH

.  The formula, however, is inadequate for a 
very fine grid size where the physical dispersion dominates over the numerical 
diffusion.  The difference between the grid size dependencies represented in Eqs.  
(57) and (59), respectively, is striking.  A heuristic method combining the two 
formulae is suggested here with an analogy to the resistance law concept used for 
the estimation of deposition velocity: 
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KHT
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    (60) 

 
This formula, which has yet to be evaluated with realistic Eulerian dispersion 
simulations, attempts to resolve the dichotomy existing between the contrasting 
dependencies on grid resolution in the components of horizontal diffusivity.  For a 
large grid size, the effect of the transportive dispersion is minimized while for a 
small grid size the impact of the numerical diffusion term is reduced. 
 
In the literature, there are a few horizontal-diffusivity formulations that depend on 
the atmospheric stability and/or height from the surface.  In the Fifth-Generation 
Penn State/NCAR Mesoscale Model (MM5) (Grell et al., 1994), both the second-
order diffusion similar to Eq. (51) and a more scale-selective fourth-order 
diffusion are used.  The second-order diffusion is applied only for the coarsest 
MM5 simulation domain and the fourth-order form is used in the interior of the 
coarsest domain as well as in the entire domain of any refinement mesh.  The 
horizontal diffusion coefficient KH  consists of a background value KH 0  and a 
term proportional to the deformation D = 2(SΓ

2 + SΛ
2 )1 / 2 : 

 
 KH = KH 0 + 0.5k2∆x2D    (61) 

 
where  KH 0 = 3.0 ×10−3 ∆x2 / ∆t .  In RAMS, the eddy mixing coefficient is a 
function determined by the deformation (D), Brunt-Vaisala frequency (NB), and 
the Richardson number (Ri) 
 

Khi ~ (cx∆x)(cz ∆z) f (D, NB, Ri)    (62) 
 
where  and  c  are dimensionless coefficients multiplying the horizontal and 
vertical spacings ∆

cx z

x  and ∆  to obtain characteristic horizontal and vertical 
mixing length scales, respectively.  There are a few formulations that depend on 
the boundary layer height h.  For example, for unstable conditions, 

z

KH  is 
parameterized by (Seinfeld, 1986) 
 

 KH = 0.1w*h = 0.1h 3/ 4(−k / L) −1/ 3u*    (63) 
 
which was derived from the measurements of Willis and Deardorff (1976).  Eppel 
et al. (1995) parameterized horizontal diffusivity as a simple factor of the vertical 
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eddy diffusivity, such as KH  = 2.3 Kzz , in which Kzz  is in turn dependent on the 
mixing length scale.  Considering the size of eddies grow with height, and 
assuming the continuity of eddy motion, the dependency of KH  on altitude is 
plausible.  However, in Eulerian models, KH  must represent the effects of 
horizontal wind variability, which in fact is reduced with height as the air moves 
away from the surface roughness elements. 
 
Hanna (1994) stated that the procedure for estimating horizontal diffusion at the 
sub-grid scale has not yet been resolved in a consistent manner in three-
dimensional Eulerian models.  He concluded that the Eulerian models must 
employ wind fields that include the full spectrum of mesoscale and regional 
fluctuations in space and time.  Overly smooth wind fields provided by the 
diagnostic wind field modeling or mesoscale meteorological models cannot yield 
sufficient horizontal diffusion in the model.  McNider et al. (1996) stated that in 
current meteorological models the energy spectrum corresponding to 120 km (or 
four times the horizontal grid spacing used) to 1 km (below which boundary layer 
turbulence is parameterized) is not well represented.  Furthermore, the 
parameterizations of sub-grid scale horizontal diffusivities incorporated in 
commonly used regional models produce KH  values that range over several 
orders of magnitude. 
 
Once the value of eddy diffusivity is defined, we can use an explicit solution 
method for Eq. (51): 
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where 2/)( 11
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, mlmlml KKK += + .  At the boundary 

cells, a zero-gradient Neumann boundary condition can be applied.  The implicit 
scheme is not used here to minimize the computer memory requirement for 
handling large horizontal grid in the subroutine.  Because Eq. (61) is an explicit 
scheme, the time-step should be chosen to prevent numerical instability and to 
maintain positivity.  With an appropriate CFL number for horizontal diffusion 
βhdiff , when ∆x = ∆y , the time-step can be determined with: 
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A range ofβhdiff  value 0.5-0.75 is often used in air quality modeling. 
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As discussed above, specification of horizontal eddy diffusivity is one of critical 
problems associated with the K-theory grid models.  In order to compensate for 
uncertainties in wind direction and speed information, these models always 
overestimate horizontal diffusion in a process that smears concentration peaks.  
With more or less uniformly distributed emission sources and with wind spectrum 
following a normal Gaussian distribution, this assumption is quite acceptable.  
But, in many cases, this smoothing process creates a loss of deterministic 
information related to the source-receptor relationship.  This loss becomes 
particularly critical when selective emission reduction strategies are inferred from 
modeling outputs in order to meet air quality goals. 
 
 
7 Vertical Diffusion Algorithm 
 
Sub-grid-scale vertical diffusion of trace pollutants in the atmospheric boundary 
layer is an important physical process that must be addressed in Eulerian 
dispersion models.  It needs to be modeled to allow realistic mixing under various 
meteorological conditions.  Two different turbulence closure schemes, local 
closure and nonlocal closure, have been used for the parameterization of vertical 
diffusion.  Local closure assumes that turbulence is analogous to molecular 
diffusion, i.e., the flux at any point in space is parameterized by known mean 
values at the same point (Stull, 1988). Most models use either a first order K-
theory or simplified second order closure for the local approach. In a nonlocal 
closure the turbulent flux at one point is parameterized by mean quantities at 
many vertical layers thus allowing exchange of mass between nonadjacent layers. 
The nonlocal closure usually is intended for convectively unstable conditions, 
while the first and second order closures can be applied to both stable and 
unstable conditions. 
 
7.1 First-Order Local Closure Techniques 
 
First-order closure retains the prognostic equations for only the mean variables 
such as wind, temperature, humidity, and trace-gas concentrations while the 
second-order moments (Reynolds fluxes) are modeled. The Reynolds flux term is 
approximated with a gradient transport theory (K-theory), or mixing length 
theory.  These methods are widely used in both meteorological and air quality 
modeling studies because of their simplicity.  These methods frequently fail 
however when eddies larger than the grid size are present in the flow.  For 
example, in the presence of convective conditions, K-theory is not recommended. 
With the K-theory, the vertical diffusion equation is given in the Cartesian 
coordinate system as 
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One of the problems with first-order closure is finding a rational basis for 
parameterizing the eddy diffusivity.  Only routinely measured or model-resolvable 
meteorological variables are used to explicitly specify a K-profile. 
 
7.1.1 Vertical Eddy Diffusivity Parameterizations 
 
While models with constant K values are easily solved analytically, they do not 
represent the turbulent exchange characteristics of the planetary boundary layer 
very well.  Therefore, a more physically realistic K-profile that varies with height 
is often used. Kzz  is allowed to vary depending on height, thermal stability, local 
gradients of potential temperature.  There is a drawback in that the 
parameterizations sometimes cannot characterize the total turbulent flow 
adequately.  A slightly different approach uses Kzz  parameterization in terms of a 
mixing length l so that one must directly determine l instead of Kzz.  Blackadar 
(1962) extended Prandtl's mixing length hypothesis to determine the length at 
which an eddy loses it identity and mixes completely with the environment.  
Lacser and Arya (1986) summarized many related works and provided a review 
of mixing length parameterizations in the stable stratified nocturnal boundary 
layer. 
 
Hanna (1994) expressed some concerns about the proper formulation of Kzz in 
Eulerian dispersion models.  In particular, the accurate specification of vertical 
diffusivity is highly important during stable conditions near the ground and aloft 
throughout a day.  Observations often show layers of pollutants persisting at 
elevations of a few hundred meters during most of the night.  If a value is 
specified for Kzz that is too large, these layers are diffused away.  The problem 
with specifying Kzz is that very little is known about the stable boundary layer 
near the ground and aloft.  Turbulence is chaotic, intermittent and unpredictable.  
Gravity waves are often present and the layer structure depends on factors outside 
the influence of local space and time constraints. 
 
We assume that eddy diffusivity for trace species have non-dimensional profile 
characteristics similar to potential temperature,Θ, i.e., Kzz = Kh.  Numerous 
authors including O'Brien (1970), Businger and Arya (1974), Brost and Wyngaard 
(1978), and Bodin (1980) have considered this approach to study a variety of 
atmospheric conditions.  Pielke and Mahrer (1975) combined O'Brien's (1970) 
formulation with Deardorff's (1974) prognostic equation for mixed layer height to 
better resolve boundary layer growth. 
 
Most of modern Eulerian models employ the eddy diffusivity concepts described 
by Louis (1979).  He proposed the use of Monin-Obukhov similarity theory to 
parameterize surface fluxes and vertical profiles.  The Monin-Obukhov similarity 
is well described in references such as Businger et al. (1971), Panofsky and 
Dutton (1984), Pielke (1984), Stull (1988) and Arya (1988; 1999).  The stability 
regime is defined with a nondimensional number z/L, where z is the height above 
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the ground and L is the Monin-Obukhov length.  For the surface layer, the non-
dimensional profile functions of the vertical gradient of Θ are expressed as: 
 

φh = Pro(1+ βh
z
L

) for moderately stable conditions (1 ≥ z/L ≥ 0) (67) 

 

 φh = Pro(1− γ h
z
L

)−1/2  for unstable conditions (z/L < 0)  (68) 

 
where Pro  is the Prandtl number for neutral stability and βh  and γ h  are 
coefficients of the profile functions determined through field experiments.  In 
addition, following Holtslag et al. (1990) we add a function for the very stable 
condition (z/L ≥ 1) to extend the applicability of the surface layer similarity: 
 

 φh = Pro(βh +
z
L

)    (69) 

 
Parameterizations for eddy diffusivity for the surface layer can be represented as: 
 

 
)L/z(

zku
K

h

*
h φ

=     (70) 

 
where u* is the surface friction velocity. 
 
Previous studies (Chang et al., 1987; Hass et al., 1991) indicated that this type of 
formulation can represent turbulent mixing in air quality models adequately.  For 
the PBL (above the surface layer), eddy diffusivity is parameterized with: 
 

 Kh =
ku*z(1 − z / h)3/ 2

φh (z / L)
  for 

z
L

> 0  (stable)  (71) 

 

 Kh = kw*z(1 − z / h)  for 
z
L

< 0  (unstable).  (72) 

 
In the above expressions, h is the depth of the boundary layer, k the von Karman 
constant, and w* the convective velocity. 
 
In the free atmosphere above the mixed layer, the eddy diffusivity can be 
represented as a function of the bulk Richardson number and vertical wind shear: 
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10   Eulerian Dispersion Models  261 

where Ko  is the background value set at 1 m2 s-1, S  is the vertical wind shear, 

S = (∆U)2 + (∆V)2 / ∆z , the Richardson number is defined as 
 

 RiB =
g

Θ oS
2

∆Θ
∆z

     (74) 

 
and its critical value is assumed to be Ric=0.25, and l is the mixing length.  
Usually a constant value around 40 m is used for the mixing length for the free-
tropospheric exchange.  For different Kh formulations in the literature, refer to 
Appendix A. 
 
7.1.2 Numerical Solver 
 
When the temporal change in air density during computational time step can be 
ignored, Eq. (66) is given in a generic form as, 
 

 

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∂      (75) 

 
To account for the loss process due to deposition in the lowest model layer, dry 
deposition flux is considered as the flux boundary condition at the surface, i.e., 
 

 1
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dep
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∂

∂      (76) 

 
where the geometric thickness of the lowest model layer is used for hdep and νd  is 
the deposition velocity.  The diffusion equation can be discretized and solved 
with explicit, semi-explicit or fully implicit algorithms (see Table 3 in Appendix 
B).  The tridiagonal system can be solved with a Thomas algorithm (Gaussian 
elimination without pivoting) followed by back substitution. 
 
7.2 Higher-Order Local Closure Techniques 
 
Improvements to the simplicity of first order closure are closure schemes in which 
more of the physics of the atmosphere is taken into account in the formulation of 
the eddy diffusivity coefficient.  They are the turbulent kinetic energy (TKE) 
closure and second-order closure schemes.  Higher-order closure is accomplished 
by parameterizing high-order terms in terms of mean variables and lower-order 
terms. 
 
7.2.1 Second-Order Closure Techniques 
 
Several basic closure ideas such as down-gradient diffusion, return to isotropy, 
and turbulent dissipation in the inertial sub range are used in the 
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parameterizations of the third moment terms.  These parameterizations must be 
especially applicable to the scales of the energy containing eddies which are very 
sensitive to atmospheric stability.  Measurements of high-order moments in the 
real atmosphere are very difficult because there is a large amount of scattering in 
the direct flux measurements and a long averaging time is required to estimate 
higher-order moments using the eddy-correlation methods.  For air quality 
applications, especially for a complicated reactive system, the technique requires 
several ad hoc assumptions that cannot be supported by observations or other 
theoretical reasoning. 
 
The set of second-order turbulence equations includes the prognostic equations of 
the mean variables and the equations of their variances. Instead of parameterizing 
these fluxes, conservation equations are written for each flux term.  This leads to 
the presence of third moment fluxes on the right side of the conservation 
equations for the second moment fluxes.  To close the system, we must 
parameterize the third-moments in these equations with known parameters.  Thus, 
second-order closure involves increased complexity and computation.  In closing 
the set of equations, higher order terms are parameterized and these assumptions 
may not be valid for all types and scales of atmospheric motions.  In the third-
order closure scheme, conservation equations for third moments are considered 
and closure is achieved by parameterizing the fourth moments.  This involves 
further increased complexity and computation.  Literature indicates that only 
slight improvements are found over the TKE closure method (see next section) at 
the expense of huge computation and added complexity with the higher-order 
schemes.  Very limited studies are available on the performance of the second-
order methods applied to air quality modeling. 
 
7.2.2 TKE Closure Technique 
 
TKE closure is a simplification of the second-order closure technique. Instead of 
using the velocity component variance equations, the turbulent kinetic energy 
equation is used.  Other equations can be used, together with the TKE, like the 
equations for the turbulent variances of temperature and humidity (e. g., Mellor 
and Yamada, 1974) or the turbulent kinetic energy dissipation rate (ε) equation (e. 
g., Alapaty et. al., 1996).  The eddy diffusivity can be represented as, 
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 Kzz = cTKE2 / ε     (77) 

 
where c is an experimental constant. 
 
This type of closure is also more economical as compared to higher-order closure 
schemes.  The TKE scheme requires additional equations relative to the first order 
closure thus providing more physically realistic solutions to the closure problem 
than first order.  Thus, TKE closure is often termed as 1.5-order closure (Mellor 
and Yamada, 1974).  Literature indicates that numerical simulations are far better 
with the TKE closure method than with the first order closure K-theory 
techniques without a large jump in computational expense. 
 
7.3 Non-Local Closure Techniques 
 
Non-local methods have been used mostly with first-order closure.  Generally, the 
higher-order local closures and the nonlocal closures yield more accurate 
solutions than lower order, but they do so at added expense and complexity.  
Nonlocal closure recognizes that larger-size eddies can transport fluids across 
finite distances before the smaller eddies have a chance to cause mixing.  This 
advective-like concept is supported by observations of thermals rising with 
undiluted cores, finite size swirls of leaves or snow, and the organized circulation 
patterns sometimes visible from cloud photographs. 
 
Two main approaches to nonlocal closure methods are transilient turbulence 
theory and spectral diffusivity theory.  Both allow a range of eddy sizes to 
contribute to the turbulent mixing process.  A variety of physical processes can be 
modeled with a transilient scheme depending on the form of the transilient matrix.  
Examples include complete mixing, top-down/bottom-up mixing, asymmetric 
convective mixing, small-eddy mixing, cloud top entrainment, a detraining 
updraft core, patchy turbulence, no turbulence, or eddies triggered by the surface 
layer.  Some closure schemes that have strong applicability to air quality 
modeling are described in the following subsections.  Nonlocal closure schemes 
are the most suitable for describing the vertical turbulence mixing process, which 
should represent turbulent diffusion and atmospheric transport by eddies 
simultaneously. 
 
In the non-local closure method, larger-size eddies can transport fluid across finite 
distances before the smaller eddies have a chance to cause mixing.  In the 
literature mostly first-order nonlocal closure models can be found, except the 
study of Stull and Driedonks, (1987) where TKE (one-and-a-half-order closure) is 
used.  In the nonlocal closure method mixing is done from the surface layer to the 
top of the convective boundary layer.  The vertical diffusion of trace gases is 
accomplished by determining a matrix containing the fraction of mass entering or 
leaving each particular layer.  This matrix containing information about the rate of 
mass fractional mixing from one level to another level is often called the 
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transilient matrix.  There are several ways to specify this matrix (Stull and 
Driedonks, 1987; Chatfield and Crutzen, 1984; Fiedler and Moeng, 1985).  The 
Blackadar scheme (Zhang and Anthes, 1982) uses the conservation of heat flux in 
a vertical column to determine the matrix. 
 
Recent studies using a nonlocal closure technique (Pleim and Chang, 1992) for 
vertical diffusion during convective conditions indicated that it was able to 
simulate rapid transport upward from the surface layer to all levels in the 
convective boundary layer.  Also, the study results indicate that air quality model 
simulations are better with this nonlocal closure technique compared to that with 
the simple K-theory (local closure) technique.  Some of the disadvantages of this 
technique are that during nonconvective conditions the model has to rely on other 
closure methods, and that turbulence generated by vertical wind shear is 
neglected. 
 
Transilient turbulence representation (Stull and Driedonks, 1987; Zhang and Stull, 
1992; Stull, 1993) provides a general paradigm for the description of the nonlocal 
diffusion algorithms.  However, it has high computational cost and there are some 
difficulties in determining the exchange coefficients among the model layers.  
Instead, there are a few simple nonlocal models that can be applied to Eulerian 
dispersion modeling, as described below. 
 
7.3.1 Blackadar Convective Scheme 
 
It is the simplest form of nonlocal scheme used in atmospheric modeling.  This 
scheme, first introduced by Blackadar (1978), has long been used as one of the 
PBL schemes in MM5 and its predecessors.  The concept of the Blackadar 
convective mixing scheme is that during conditions of free convection air in the 
surface layer is heated, to a superadiabatic potential temperature by the sensible 
heat flux from the surface.  Thermal plumes rise from the surface layer due to 
their buoyancy until encountering air with higher potential temperature at the top 
of the convective boundary layer.  Mixing occurs at all heights through plume 
detrainment while the plume core maintains the characteristics of the surface 
layer.  Upward mixing and downward mixing are symmetric as in the case of 
Blackadar convection as shown in Figure 6a.  Penetration into the capping 
inversion can be included by allowing a small amount of over-shooting into a 
region of negative buoyancy.  This scheme is used only in the convective 
boundary layer and must be coupled with another scheme for non-convective 
conditions and above the boundary layer, such as K-theory.  The Blackadar model 
does not take the effect of asymmetric vertical velocity spectra into account. 
 
The convective mixing is assumed to be dominated by eddies of varying sizes but 
all having roots in the surface layer, with each eddy exchanging a certain amount 
of its mass with the air around it as it ascends.  The rate of change of mean 
potential temperature caused by the mass exchange in the mixed layer can be 
expressed as 
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    (78) 

 
where ω(z ) is a weight function that accounts for the variation of exchange rate 
with height.  The mass exchange rate, Mu, can be estimated from conservation of 
energy, which requires the heat flux at any level to satisfy the equation 
 

 H = Hsfc − Mu cpρ
zsfc

z

∫ (θ sfc −θ )ω (ξ)dξ    (79) 

 
where Hsfc is the sensible heat flux leaving the surface layer and cp is the specific 
heat at constant pressure.  When the integration limit is extended to the top of the 
boundary layer, where H is assumed to be zero, we can estimate Mu with 
 

 Mu = Hsfc / cp ρ
zsfc

zh

∫ (θ sfc − θ )ω(ξ)dξ    (80) 

 
Usually the weight function w is approximated to be unity in the mixed layer.  
With this information, one can solve Eq. (75) with the deposition flux as the 
bottom boundary condition, Eq. (76).  With the Blackadar scheme, the mixing 
algorithm is represented with, 
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for the lowest model layer, where Lp is the index for the PBL top, and 
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The system can be solved with the numerical scheme described in Table 3 
(Appendix B). 
 
7.3.2 Asymmetric Convective Model (ACM) 
 
The Asymmetric Convective Model (ACM) (Pleim and Chang, 1992) is based on 
Blackadar’s nonlocal closure scheme (Blackadar, 1978) but has a different 
scheme for downward mixing in the convective boundary layer (CBL).  
Observational evidence and large-eddy simulation modeling studies indicate that 
mixing processes in a convective boundary layer are essentially asymmetric (i.e., 
turbulence is anisotropic; Schumann, 1989) with fast upward buoyant plumes and 
slow broad compensatory subsidence.  Therefore the direct, non-local downward 

 



266  Air Quality Modeling – Vol. I 

transport of the Blackadar scheme is replaced with layer by layer subsidence 
which increases in mass flux as it descends, like a cascading waterfall (see Figure 
6b). 
 
Because the mass influx to the lowest model layer is from the second layer only in 
ACM, we can write 
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where Mu represents upward mixing rate, Eq. (80), and Mdj represents downward 
mixing rate at layer j.  It is determined by 
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Then the system can be solved with the algorithm described in Table 3 (Appendix 
B).  As with the Blackadar model, the ACM can only be used during convective 
conditions in the PBL.  For other stability regimes, one needs to rely on other 
schemes such as K-theory. 
 
7.3.3 Ertel Non-Local Scheme 
 
The local diffusion approach described earlier can be extended to include the 
nonlocal mixing under convective boundary layer.  Ertel (1942) first proposed 
that the potential temperature (θ) flux could be expressed with two terms, the 
eddy diffusion term and the nonlocal Ertel flux (N) to account for the counter-
gradient flux: 
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Similarly, Deardorff (1966) suggested the vertical turbulent mixing for the 
unstable boundary layer could be parameterized by 
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where γ q  is a correction to the local gradient that incorporates the contribution of 
the large-scale eddies to the total flux.  This formulation was initially introduced 
to handle vertical mixing of potential temperature (i.e., when q = θ ) under strong 
convective conditions where the stability z∂θ∂ /  can change sign above the 
surface layer and remain slightly positive over most of the mixed layer 
(Wyngaard, 1982).  This implies negative eddy diffusivity values. 
 
One obvious difficulty of this method is how to determine the magnitude of γ q , 
nonlocal transport correction factor.  Several authors have suggested similar 
methods to estimateγ q : 
 

 Troen and Mahrt (1986): γ q = C'
w' q' s

w*h
, C' ≈ 10  (88a) 

 

 Holtslag et al. (1995):  γ q = aw*
w' q' s

wm
2h

, a ≈ 7.2  (88b) 

 

 Hong and Pan (1996):  γ q = b
w' q' s

wsh
, b ≈ 7.8  (88c) 

 

 Siebesma and Teixeira (2000): γ q = aw*
w' q' s

σ w
2h

, a ≈ 2  (88d) 

 
where w* is the convective velocity scale, wm is the velocity scale combining the 
influence of shear and convection (with free convection limit wm ~0.85 w*), ws is 
the mixed-layer velocity scale represented as ws = u*φm

−1, and σw  is the standard 
deviation of vertical wind fluctuation. 
 
For potential temperature, γ q  can be estimated by relating the counter-gradient 
term with the flux-profile formulation at the top of the surface layer (Troen and 
Mahrt, 1986; Hong and Pan, 1996) to give γ q =γθ ~ 0.7x10-3 m-1 K.  As shown by 
Stevens (2000), the Ertel nonlocal scheme approaches to the well-mixed boundary 
layer asymptotically.  The nonlocal scheme transports scalar quantities away from 
the surface more rapidly than the local scheme (Holtslag and Boville, 1993; 
Holtslag et al., 1995).  Although the Ertel nonlocal scheme is used in some 
meteorological models, it has not been used in Eulerian transport models because 
of the uncertainties in determining the nonlocal flux correction factors for 
different air pollutants. 
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(a)

 

(b)

 

(c)

 

(d)

 
 

Figure 6.  Schematics of nonlocal schemes: (a) the Blackadar scheme (b) the 
asymmetric convective model, (c) the transilient turbulence model, and (d) 
eddy diffusion with nonlocal Ertel flux.  The arrows point directions of 
mass fluxes, the relative sizes of boxes represent the volume of air in 
vertical cells and the line thickness is related with the relative magnitudes 
of fluxes. 

 
 
8 Simplified Eulerian Models 
 
Although most modern operational Eulerian air quality models are based on 
numerical methods described above, simplified models can provide useful 
insights of the atmospheric dispersion processes.  We describe these models from 
a historic perspective. 
 
8.1 Single Box Models 
 
The single box model (Lettau, 1970) is the simplest air pollution model and is 
based on the mass conservation of pollutant inside a Eulerian box, which 
generally represents a large area such as a city.  The physical concept underlying 
the box model approach is depicted in Figure 7.  Mass conservation gives 
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in which ϕ a  is the (average) concentration aloft (z>h) over the city, for example, 

and ϕ b  is the background concentration at the upwind location.  The term 
t
h

a ∂
∂ϕ  

represents entrainment effects of pollutants due to the growth of the boundary 
layer.  For simple conditions with negligible background concentrations (i.e., 



10   Eulerian Dispersion Models  269 

ϕ a = 0  and ϕ b = 0) one can find the solution to Eq. (89) readily (Venkatram, 
1978) 
 

 ϕ (t)h(t) = ϕ oho exp(−t / Tf ) + QaTf 1 − exp(−t / Tf )[ ]  (90) 
 
where ϕ o  and h  are initial concentration and boundary layer height, at t  
respectively, and 

o = to

Tf = Lx / U  is the "flushing time" required for the air to pass 
completely over the urban area.  If the diurnal evolution of the boundary layer are 
known, Eq. (90) allows the computation of pollutant concentrations at a given 
time t.  In a theoretical stationary condition (i.e., t = ∞ ), ϕ  tends to the limit ϕe : 
 

 ϕ e = ϕ t = ∞ = QaTf / h     (91) 
 
which is sometimes a reasonable quasi-stationary approximation in the urban 
areas. 
 
The single box modeling approach, which is a simplest form of the Eulerian 
model, provides a basis for regional scale Lagrangian models in which a volume 
of air is assumed to move along with the prevailing wind without losing its 
integrity.  The single box model has been applied for both inert and reactive 
pollutants.  The model for the latter case is called the Photochemical Box Model 
(PBM) and Eq. (89) is modified to incorporate effects of photochemical reactions 
in the mass balance expression (Schere and Diemrjian, 1984): 
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where ϕ i  is mean concentration of species i within the PBM, and Ri  is rate of 
production and/or destruction of species i by chemical reactions.  Refer to Figure 
7 for the schematic illustration of processes simulated in PBM.  Diemrjian and 
Schere (1979) used such a model to predict ozone concentrations over a city.  The 
vertical entrainment is important for the ozone predictions because ozone is often 
trapped above the boundary layer at night and is mixed down to the surface by the 
convective mixing in the following morning.  Meszaros et al. (1978) used a box 
model to compute anthropogenic emissions and dry/wet deposition processes.  
Jensen and Petersen (1979), who used an acoustic sounder for evaluating the 
boundary layer height, found a very good agreement between the single box 
model output and urban concentration measurements.  One variant of the 
photochemical box model that has been widely used for estimating ozone 
concentration in urban areas is EKMA (empirical kinetic modeling approach) 
technique (Dodge, 1977). 
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Figure 7. Schematic illustration of the photochemical box model (PBM) 
domain.  [from Schere and Diemrjian,1984]  

 
8.2 The Slug Model 
 
Venkatram (1978) showed that the box model has unrealistic inertia and cannot 
properly handle rapid temporal changes in either Q or U.  He proposed the slug 
model as an improvement to the box model, especially during stagnation episodes 
(Figure 8).  The slug model allows a concentration ϕ  to vary in the along-wind 
direction x and in the vertical direction z, but assumes that the concentration does 
not vary in the crosswind direction y.  This allows us to write the mass 
conservation equation within the single box in terms of two distances (x, z) as  
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where x is the downwind distance inside the box and U is assumed to be 
independent of height.  We can avoid making assumptions about the vertical 
concentration distribution by integrating Eq. (93) in vertical direction: 
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where  and h is either the mixing height or the vertical height 
of the box (may be dependent on the distance x) that encompasses the plume 
generated by the emission Q . 

Φ (x) = ϕ(x,z)
o

h(x )

∫ dz

l

 
The steady state solution of Eq. (94) is 
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The solution at time t after the emission is shut off (i.e., Q  becomes zero), l

 

 Φ (x, t) = Φ(x − Ut) ∞ =
1
U

Ql
o

h( x)

∫ dzdx'
o

x− Ut

∫ ; t ≤ Tf   (96a) 

 
 Φ (t) = 0 ; t > Tf    (96b) 

 
As before, Tf = Lx / U  is the flushing time.  For a special case that the vertically 

integrated source strength does not change with distance x, (i.e., ∫  = 
constant), we have 
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∫ dz ; t ≤ Lx /U   (97) 

 
One of advantage of the slug model over the box model is that the volume is 
completely flushed out after the flushing time, where as the single box solution of 
Eq. (89) is not able to reproduce this complete flushing. 
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Figure 8. A schematic illustration of flushing of pollutants through a city.  
(After Venkatram, 1978) 
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Appendix A 
 
Kzz Formulations in the Literature 
 
Following Yamartino et al. (1992), Nikomo et. al. (1999) divided the PBL into 
several atmospheric turbulence regimes (see Figure A-1) and for each regime they 
proposed Kzz parameterization: 
 
For surface layer,   Kzz = ku*z /φh(z / L)  
 near neutral upper layer  Kzz = ku*z /φh(zSL / L) 

 free convection  Kzz =1.22wf z , with 3/1)/'' ( of wzgw Θ= θ  

 mixed layer   Kzz = 0.57w*z ,with 3/1
* )/'' ( oswhgw Θ= θ  

 local scaling layer  Kzz = kulz / φh (z / Λ) 
 z – less scaling  Kzz = 0.17kulΛ  
 intermittent layer  Kzz =  10% of the layer below, 
 
where k  is the Von Karman constant, u* friction velocity, L is the Monin-
Obukhov length, and φ is the similarity function for heat,  h is the boundary layer 
height, zSL is the surface layer height, approximated by 0.1h, ul is the local friction 
velocity, Λ is the local Monin-Obukhov length. 
 

 
 

Figure A-1. Stability regimes of the atmospheric boundary layer (From 
Nikomo et al., 1999) 
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Yamartino et al. (1992) used similar approach: 
 
For unstable case (L < 0) 
 surface layer where z/h < 0.1 and -z/L < 1 
  Kzz = ku*z / φh (z / L) , with φh (z / L) = 0.74(1− 9z / L)−1/ 2  
 free convection where z/h < 0.1   -z/L > 1 
  Kzz = w*z  
 near neutral upper layer where 0.1 < z/h < 1 and -h/L < 10 
  Kzz = 0.1ku*h/ φh(0.1h / L) 
 mixed layer where 0.1 < z/h < 1 and  -h/L > 10  
  Kzz = 0.1w*h  
 and where z/h > 1, Kzz  = 10% of the value below 
 
For the stable cases (L > 0), 
 surface layer where z/h < 0.1,  (h-z)/Λ < 10 
  Kzz = ku*z / φh (z / L) , with φh (z / L) = 0.74(1+ 5z / L)  
 in the boundary layer where 0.1 < z/h < 1 and h/L < 1 
  Kzz = 0.1ku*h/ φh(0.1h / L) 
 where z/h > 0.1 and h/L > 1 
  Kzz = ku* (1 − z / h)3 / 4 z / φh(z / Λ) 
 where z/h > 0.1, h/L > 1, and 1<z/Λ<(h/Λ-10), 
  Kzz = ku* (1 − z / h)3 / 4 Λ  
 outer layer where z/h > 1 and z/Λ>(h/Λ-10) 
  Kzz  = 10% of the value below 
 
Some other formulations, which appear in the literature, are mentioned below: 
 
For unstable conditions: 
 Yokoyama et al. (1979) 
  Kzz = cw*h(z / h)1/ 3 (1− z / h)1/ 3 , with c = 0.06 ~ 0.13, 
 Sorbjan (1986b), above z/h=0.77 the flux is negative, 
  Kzz =1.54w*h(z / h)4 / 3(1 −1.3z / h)1/ 3  
 Troen and Mahrt (1986), for z/h>0.1, 
  Kzz = kh(u*

3 + 0.7kw*
3 )1 / 3(z / h)(1 − z / h)2 , 

 Lange (1989)  
  Kzz = ku*z / φh (z / L)exp(−Vgh / u*z), where Vg is geostrophic wind 
 Pleim and Chang (1992) 
  Kzz = ku*z / φh (z / L)  for surface layer 
  Kzz = kw*z(1− z / h) for mixed layer  
 Holtslag and Boville (1993) 
  , where S is local vector wind shear, Kzz = lc

2SFc(Ri)
    Ri is the Richardson number 
    Fc (Ri ) = (1 −18Ri)1/ 2  
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    1/lc= 1/ kz +1/ λ , λ = 30 + 270exp(1− z / 1000) 
 Liu and Caroll (1996) 
   Kzz = lc

2S(1− 87Ri)2

    λ=80 in the boundary layer 
    λ= 60% of grid size in the free atmosphere 
 Tirabassi and Rizza (1997) 
  Kzz = kw*z(1− z / h) for h/L <-10 
 Degrazia et al. (1997) 

  )(]75.0)()1[(15.0 2/13/22
* h

zF
L
z

h
zhwK zz +

−
−= −  

 or, Kzz = 0.22(
z
h

)1/ 3 (1 −
z
h

)1/ 3 F(
z
h

), 

  where F
z

(
h

) = [1− exp(−4
z
h

) − 0.0003exp(8
z
h

)]4 / 3  

 Prabha et al. (1999) 

  Kzz = 2.5w*h(
kz
h

)4 / 3 (1− 15
z
L

)1/ 4 , 0<z/h <0.05 

  Kzz = w*h f (
z
h

), 

 where f (η) = 0.021 + 0.408η +1.351η2 − 4.096η3 + 2.56η4 ,  
 for 0.05<η=z/h<0.6 
  f (η) = 0.2 exp(6 −10η), for 0.6<η=z/h<1.1 
  f (η) = 0.0013, for η=z/h<>1.1 
 Ulke (2000) 

  Kzz = ku*h(
z
h

)(1 −
z
h

)[1 − 22(
h
L

)(
z
h

)]1 / 4  

 Degrazia et. al. (2000) 

  Kzz = 0.16w*h[0.01(−
h
L

)]1/ 2[1− exp(−4
z
h

) − 0.003exp(8
z
h

)]4 / 3  

 Siebesma and Teixeiro (2000) 

  Kzz = ku*z(1−
z
h

)2 /(1− 39
z
L

)−1 / 3  

 
For stable conditions, we have: 
 Brost and Wyngaard (1978) 

  Kzz =1.25ku*z(1 −
z
h

)3/ 2 /(1+ 4.7
z
L

)  

 Yokoyama et al. (1979) 

  Kzz = cu*z(1 −
z
h

) /(1 + 6
z
L

), c=0.06~0.13 

 Sorbjan (1986a) 

  Kzz = ku*z(1−
z
h

)/(0.74 + 4.7
z
L

)  

 Sorbjan (1986b) 
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  Kzz = ku*z(1−
z
h

)(2α1 −α 2 ) /(1 + 5.2
z
L

), α1=2; α2=3 

 Lange (1989) 

  Kzz =
ku*z

φh (z / L)
exp(−

Vg z
u*h

)  

 Pleim and Chang (1992) 

  Kzz =
ku*z

φh (z / L)
, for  z/h<0.1, 

  where  φh z( / L) = 0.74 + 4.7z / L , 0<z/L<1 
   φh (z / L) = 4.7 + 0.74z / L , z/L>1  

  Kzz =
ku*z(1− z / h)2

φh(z / L)
, for 1>z/h>0.1 

 Holtslag and Boville(1993) 
  , where Kzz = lc

2SFc(Ri) Fc (Ri ) = [1 +10Ri(1 + 8Ri)]−1  
 Liu and Carroll (1996) 
   Kzz = lc

2S(1− Ri / Ric)
2

 Degrazia et. al. (2000)  
  Kzz = ku*z(1+ 3.7z / Λ)1/ 3 /(1 +15 fcz / u* + 3.7z / Λ)4 / 3 , in stable 
  shear layer 
  where f ~ 1c 0−4 s−1 is the Coriolis factor 

  Λ = L(1 −
z
h

)(1.5α1 −α 2 ) , α1=1.5; α2=1 

  Kzz =
ku*z(1 − z / h)4 / 3

[1 +3.7(z / L)(1− z / h)5 / 4 ]
, for highly stable case ( z / L → ∞ ) 

2  Kzz = 0.11u* L(1− z / h) , when eddy sizes are limited by stability 
 Ulke (2000) 
  Kzz =

ku*z(1− z / h)
(1 + 6.9z / L)

 

 Ha and Mahrt (2000) 

  Kzz = l2 dVh

dz
, where l = lo[exp(−c1Ri) + c2 /(Ri + c3 )], 

  c1=8.5, c2=0.15, c3=3, lo=8.5. 
  This is applied at all levels subject to lo < kz . 
  Within the PBL, they use the larger value between the formula 
  above and 

  Kzz = ku*z(1−
z
h

)2 / Prφm(
z
L

) , 

  where Pr = 1.5 + 3.08Ri , and φm (
z
L

) = 1 + 4.7(z / L). 

  For z/L>1, z/L in above formula is replaced by 1. 
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Table 3. Vertical diffusion algorithms (Byun and Ching, 1999) 

θ=a time-step weighting factor (0.5 for Crank-Nichol ethod) and ξ j +1/ 2 = (ξ j + ξj + 1) / 2 ; ∆ξ j +1 / 2 = ξ j +1 / 2 − ξ j −1 / 2
; ∆ξ j +1 = ξ j +1 − ξ j . son m

Classification 
 

 
Algorithm 

 
Solver 

Semi-implicit 
eddy 
diffusion 
solver 

For j=1 (layer 1):  
v

q1
n+1 = q1

n − ∆t d

hdep

ϑq1

n+1 + (1− ϑ )q1

n[ ]

+
∆t
∆ξ1

K
1+

1
2

∆ξ
1+

1
2

ϑ (q2

n+1 − q1

n+1 ) + (1 −ϑ )(( )
 

 
 q2

n − q1

n )
 

 
  

For : 2 ≤ j ≤ L −1

qj
n+1 = qj

n +
∆t
∆ξj

•

Kj +1 / 2

∆ξ j +1/ 2

ϑ (qj +1

n+1 − q( ) 

  

−  
Kj − 1/ 2

∆ξ j −1 /2

j
n+1) + (1− ϑ)(qj +1

n − qj
n )

ϑ(qj
n+1 −( )qj −1

n+1) + (1− ϑ )(qj
n − qj −1

n )
 

  
 

 
At the top of layer  
qn+1 = qn −N N

 
∆t

∆ξN

K N−1 / 2

∆ξN −1/ 2

ϑ (qN

n+1 − qN −1

n+1 ) + (1 −ϑ )(qN

n − qN −1

n )( )
  

 

d1 c1 L 0 L 0
a2 d2 c2 0 L 0
M a3 O L L 0
0 M M dj M M

M 0 0 0 O cL −1

0 L 0 0 aL dL

 

 

 
 
 
 
 

 

 

 
 
 
 
 

q1
n +1

q2
n +1

M

qj
n +1

M

qL
n +1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

b1

b2

M

bj

M

bL

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

d1 = 1+
ϑ∆t
∆ξ1

K
1

1
2

∆ξ
1

1
2

+ϑ∆t
vd

hdep

; c1 = −
ϑ∆t
∆ξ1

K
11

2

∆ξ
11

2

;aN = −
ϑ∆t
∆ξN

K
N − 1

2

∆ξ
N − 1

2

;dN = 1+
ϑ∆t
∆ξN

K
N −

1
2

∆ξ
N −

1
2

 

b1 = 1 −
(1− ϑ)∆t

∆ξ1

K
11

2

∆ξ
11

2

− (1 −ϑ )∆t
vd

hdep

 

 
 

 

 
 q1

n +
(1 −ϑ )∆t

∆ξ1

K
11

2

∆ξ
1 1

2

q2
n  

bN = 1−
(1 −ϑ )∆t

∆ξN

K
N −

1
2

∆ξ
N −

1
2

 

 
 

 

 
 qN

n +
(1− ϑ)∆t

∆ξN

K
N −

1
2

∆ξ
N −

1
2

qN−1

n  

for 2 ≤ j ≤ L −1:aj = −
ϑ∆t
∆ξ j

K
j − 1

2

∆ξ
j − 1

2

; dj =1 +
ϑ∆t
∆ξ j

K
j +

1
2

∆ξ
j +

1
2

+
K

j −
1
2

∆ξ
j−

1
2

 

 
 

 

 
 ; cj = −

ϑ∆t
∆ξ j

K
j+

1
2

∆ξ
j+

1
2

 

bj = 1 −
(1 −ϑ )∆t

∆ξ j

K
j +

1
2

∆ξ
j +

1
2

+
K

j −
1
2

∆ξ
j −

1
2

 

 
 

 

 
 

 

 
  

 

 
 qj

n +
(1−ϑ )∆t

∆ξ j

K
j+

1
2

∆ξ
j +

1
2

qj +1

n +
(1− ϑ )∆t

∆ξ j

K
j−

1
2

∆ξ
j−

1
2

qj −1

n  
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Classification 
 

 
Algorithm 

 
Solver 

Blackadar 
symmetric 
eddy; 
Blackadar 
(1978) 

For j=1 (layer 1):
q

 
∂ 1

∂t
= − d

hdep

v
q1 − m1k (t)

k =1

L p

∑ [q1(t ) −qk ( t)

, 
for 2 ≤ j ≤ Lp :  
∂qj

∂t
= − m jk(t)

k =1

L p

∑ [qj(t) − qk(t)] 

where  = rate of mass 
exchange between two layers 

m jk

m1k = Mu
∆ξk

∆ξ1

; m j1 = Mu
∆ξ1

∆ξ j

 

and the upward flux is obtained 
from 

Mu = Hsfc / Cpdρ
ξsfc

ξh

∫ (Θ sfc −Θ)w(ξ)Jξdξ

 
 

Crank-Nicholson time differencing 
d f L f L f  qn

 

1 2 j L p

e2 d2 0 0 L 0
M 0 O L L 0

ej M M dj M M

M 0 0 0 O 0
eLp

L 0 0 0 dLp 

 
 
 
 
 

 

 
 
 
 
 

1
+1

q2
n +1

M

qj
n +1

M

qLp

n +1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

b1

b2

M

bj

M

bLp

 

 

 
 
 
 
 

 

 

 
 
 
 
 

v

 

d1 = 1+ ϑ d∆t
hdep

+ϑ
∆tMu

∆ξ1

(ξh − ∆ξ1)  

b1 = 1− (1−ϑ )
vd∆t
hdep

− (1 −ϑ )
∆tMu

∆ξ1

(ξh − ∆ξ1 )
 

  
 

  q1
n + (1 −ϑ )

∆tMu

∆ξ1

∆ξkqk
n

k= 2

L p

∑  

for 2 ≤ j ≤ Lp : fj = −ϑ
∆tMu

∆ξ j

 

 
  

 
 ∆ξ1

;ej = −ϑ
∆tMu

∆ξ1

 

 
  

 
 ∆ξ j

; dj =1 +ϑ
∆tMu

∆ξ j

 

 
  

 
 ∆ξ1

; 

bj = u

∆ξ j

1− (1 −ϑ )
∆tM 

 
  

 
 ∆ξ1

 

 
 

 

 
 qj

n + (1− ϑ)
∆tMu

∆ξj

 

 
  

 
 ∆ξ1q1

n  
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Classification 
 

 
Algorithm 

 
Solver 

Asymmetric 
Convective 
Model (Pleim 
and Chang, 
1992) 

For j=1 (layer 1): 
∂q1

∂t
= −Mu

ξh − ξ1

∆ξ1

(q1 − q2 ) −
vd

hdep

q1
 

for 2 ≤ j ≤ Lp : 

∂qj

∂t
= Mu q1 −

ξh −ξ j −1

∆ξ j

 

 
  

 
 qj +

ξh − ξ j

∆ξ j +1

 

 
  

 
 qj +1

 

 
 

 

 
 
 

where Mu represents upward mixing rate. 
Mdj represents downward mixing rate at 
layer j and is defined as:  
 Mdj = Mu

ξh − ξ j −1

∆ξ j

 

and the upward flux is obtained from 
M = H / ρ(u sfc cp θ − θ )J ξ − ξsfc 2 ξ 1 h( )[ ] 
Mdj−1 = Mu + Mdj

∆ξ j +1

∆ξ j

 

 

d1 c1 L 0 L 0
e2 d2 c2 0 L 0
M 0 O O L 0

ej M M dj cj M

M 0 0 0 O cLp −1

eL p
L 0 0 0 dL p

 

 

 
 
 
 
 

 

 

 
 
 
 
 

q1
n+1

q2
n+1

M

qj
n+1

M

qLp

n+1

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

b1

b2

M

bj

M

bL p

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 

d1 = 1+ (
vd

hdep

+ Mu
ξh − ξ1

∆ξ1

)ϑ∆t ; c1 = −Mu
ξh −ξ1

∆ξ1

ϑ∆t  

b1 = [1 − (
vd

hdep

+ Mu
ξh −ξ1

∆ξ1

)(1 −ϑ )∆t]q1
n +Mu

ξh −ξ1

∆ξ1

(1 −ϑ )∆tq2
n

 
for2 ≤ j ≤ Lp : 

ej = −Muϑ∆t ;dj =1 + Mu(
ξh − ξ j

∆ξ j +1

)ϑ∆t ; cj = −Mu (
ξh −ξ j

∆ξ j

)ϑ∆t ;  

bj = [1 − Mu

ξh − ξj −1

∆ξj

)(1− ϑ )∆t]qj
n +Mu

ξh −ξ j

∆ξj +1

(1− ϑ )∆tqj +1
n + Mu(1−ϑ )∆tq1

n  
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Table 4.  Numerical algorithms with two-level time differencing for constant grid spacing (Sources: Pielke, 1984; 
Long and Pepper, 1981; Odman, 1998; Chock and Dunker, 1983, Chock, 1985; Chock, 1991) 
 

 
Classification 
 

 
Scheme 

 
Algorithm 

 
Characteristics 

 
References 

Flux form
finite 
Difference 

 Donor Cell 
(upwind 
difference) 
Scheme, 
forward in 
time 

ϕ j
n+1 = ϕ j

n − [F(ϕ j
n,ϕ j +1

n ,uj +1/ 2 ) − F(ϕ j −1
n ,ϕ j

n ,uj−1 / 2 )], 
where 
F(ϕ j ,ϕ j +1,u) = [(u + u )ϕ j + (u − u )ϕ j +1]

∆t
2∆x

 

Very diffusive, 
Positive 
definite, 
monotonic, 
linear, fast 

Roache (1972) 

Flux form,
iterative finite 
Difference 

 Smolarkiewcz 
Scheme 

ϕ j
* = ϕ j

n − [F(ϕ j
n,ϕ j +1

n ,uj +1/ 2) − F(ϕ j −1
n ,ϕ j

n ,uj −1 / 2 )], 

ϕ j
n+1 = ϕ j

* − [F(ϕ j
*,ϕ j +1

* , ˜ u j +1/ 2 ) − F(ϕ j −1
* ,ϕ j

*, ˜ u j −1/ 2)] , 
where 
F(ϕ j ,ϕ j +1,u) = [(u + u )ϕ j + (u − u )ϕ j +1]

∆t
2∆x

 

˜ u j +1/ 2 =
( uj +1/ 2 ∆x − ∆tuj +1 / 2

2 )(ϕ j +1
* −ϕ j

* )
(ϕ j +1

* + ϕ j
* + ε)∆x

, ε = a small value (10-15) 

Moderately 
diffusive, 
Positive 
definite, 
nonlinear, 
relatively fast 

Smolarkiewicz 
(1983) 

Advective 
form, upstream 
interpolation 

Upstream 
Cubic-spline 
Scheme, 
forward in 
time 

ϕ j
n+1 =

S(x j − β j ∆x),  for  uj ≥ 0
S(x j + β j ∆x),  for  uj < 0

 
 
 

  
, where 

S(x j − β j ∆x) = ϕ j
n − β j ∆xNj + β j

2[∆xNj −1 + 2∆xNj + 3(ϕ j −1
n −ϕ j

n)]

− β j

           
3
[∆xNj −1 + ∆xN j + 2(ϕ j −1

n −ϕ j
n )] 

S(x j + βj ∆x) = ϕ j + β j
n ∆xNj − β j [∆xNj +1 + 2∆xNj + 3(ϕ j

n −ϕ j +1
n )]

+ β j

2            
3
[∆xNj + ∆xNj +1 + 2(ϕ j

n − ϕ j+1
n )], 

and S' (x j) = Nj  satisfies 3(ϕ j +1
n −ϕ j −1) /n ∆x = Nj −1 + 4N j + Nj +1 . 

Diffusive, 
Produces  
negative conc. 

 

β j = uj∆t / ∆x  and βmax = max( β j ), the maximum Courant-Fridlich-Lewy (CFL) number for the grid domain. 
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Classification 
 

 
Scheme 

 
Algorithm 

 
Characteristics 

 
References 

Flux form,
Galerkin Finite 
element  

 Chapeau 
Function 
Scheme, 
implicit 
(Crank-
Nicholson) 

[2 − (2β j −1 + β j )]ϕ j −1
n +1 + [8 + (β j +1 − β j−1 )]ϕj

n+1 +[2 + (β j + 2β j +1)]ϕ j +1
n +1

= [2 + (2βj −1 + β j )]ϕj −1
n + [8 − (β j +1 − β j −1 )]ϕ j

n + [2 − (βj + 2β j +1)]ϕ j +1
n  

Less diffusive. 
Spurious 
oscillations.  
Produces 
negative conc. 
Often needs a 
smoothing filter 

McRae et al. 
(1982), 
Odman and 
Russell 
(1993) 

Flux form,
Pseudo-
spectral 
technique 

 Accurate 
Space 
Derivative 
Method 

Expand the flux form advection as a truncated Taylor series in 
time.   

 
ϕ n+1 = ϕ n +

∂ϕ
∂t

 
 
  

 
 

n

∆t +
∂ 2ϕ
∂t2

 
 
 

 
 
 

n
∆t2

2!
+

∂3ϕ
∂t3

 
 
 

 
 
 

n
∆t3

3!
+L  

Assuming the velocity is not a function of time, the spatial 
equivalents of time derivatives are computed in chain rule form 
with the fast Fourier transform: 
∂ϕ
∂t

= −ϕ
∂u
∂x

−u
∂ϕ
∂x

, 

∂2ϕ
∂t2 =

∂
∂x

u
∂uϕ
∂x

 
  

 
  = ϕ u

∂ 2u
∂x2 + (

∂u
∂x

)2 
  

 
  + 3u

∂ϕ
∂x

∂u
∂x

+ u2 ∂ 2ϕ
∂x2

, 

∂ 3ϕ
∂t3 = −ϕ 4u

∂u
∂x

∂ 2u
∂x2 + u2 ∂ 3u

∂x3 + (
∂u
∂x

)3 
  

 
   

             − ∂ϕ
∂x

4u2 ∂2u
∂x2 + 7u(

∂u
∂x

)2 
  

 
  − 6u2 ∂ 2ϕ

∂x 2
∂u
∂x

− u3 ∂ 3ϕ
∂x3

. 

Due to the dispersive quality, it produces high-frequency 
noise.  Often used in combination with a filter (e.g., Forest 
filter) 
 

Very accurate, 
Produces 
negative conc. 
High 
computational 
cost 
Needs a 
smoothing filter 

Gazdag 
(1973) 
Dabdub and 
Seinfeld 
(1994) 

l. I 
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Scheme 

 
Algorithm 

 
Characteristics 

 
References 

Flux form,
finite volume 
scheme 

 Piecewise 
Parabolic 
Method 
(PPM) 
 

Concentration distribution is assumed to be parabolic in any given grid 
cell. ( )ϕ j

n+1 η( )= ϕL , j +η ϕR , j −ϕ L, j + 6 ϕ j
n −

ϕL , j +ϕ R, j

2
  
  1 −η( )  , 

    

Where η is the nondimensional coordinate and left and right boundary 
values are defined as ϕ L, J +1 = ϕR ,J = ϕ j +1/ 2

*  with initial guess, 
7

ϕ j +1/ 2
* =

12
(ϕ j

n +ϕ j +1
n ) −

12
1

(ϕ j
n
+ 2 +ϕ j −1

n ) . 

Edge values are modified such that the results are monotonic: (1) if ϕj is 
a local extremum, then the distribution is assumed to be constant, (2) 
when ϕj is between ϕ

L,j
 and ϕR,j, but sufficiently close to one of the 

values, one of the edge values is reset so that the derivative of ϕ (η) is 
zero at the opposite edge 

Moderately 
diffusive, 
Positive 
definite, 
monotonic 

Colella and 
Woodward, 
(1984) 
Carpenter et 
al., (1990) 

Flux form,
finite volume 
scheme 

 Bott’s 
Scheme 

The distribution of the concentration within the cell is represented by a 
polynomial of order l: ϕ j (η) = aj,kη

k

k =0

l

∑

ϕ j + i = aj
k= 0

l

∑
i

i

. The polynomial can be made to 

preserve area by requiring: 
, kη

kdη
+1

∫ , i = 0,±1,±2,...,±
l
2

 over a 

stencil of l+1 grid cells by varying the value of i.  The solution to this 
linear system yields the coefficients aj,k.  For example, coefficients for a 
quadratic (l=2) scheme are; 1

a0 = −
24

ϕ j +1 − 26ϕ j −ϕ j −1( ), 

a1 =
1
2

ϕ j +1 − ϕ j −1( ), and a2 =
1
2

ϕ j +1 − ϕ j +ϕ j −1( )   

Mildly 
diffusive, 
Positive 
definite*, 
nonlinear, 
relatively fast, 
non-
monotonic 

Smolarkiewic
z (1983) 

Non-dimensional local coordinate is defined as η = (x - xj-1/2) / ∆x . 
*Small negative numbers can result for a signal with large gradients due to machine precision problems

 

1
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Scheme 

 
Algorithm 

 
Characteristics 

 
References 

Flux form,
finite volume 
scheme 

 Yamatino-
Blackman 
Cubic 
scheme 
 

Interpolating cubic spline: ϕ j (η) = a0 + a1η + a2η
2 + a3η

3 , with 

a0 = ϕ j , a1 = dj ∆x , a2 = −
1
4

ϕ j +1 − 2ϕ j + ϕ j −1( )+
3∆x

8
dj +1 − dj −1( ), 

a3 = ϕ j +1 −ϕ j −1( )−
∆x
6

dj +1 +10dj + dj −1( ) 
The spline derivatives, , are obtained from the tridiagonal system: dj

1 =α dj −1 + 1− 2α( ) dj +α dj +

ϕ j +1 − ϕ j −1

2∆x
. (α=0.22826).  

Positivity is maintained by (1) when ϕj is a local minimum, a donor-cell 
scheme is used instead of the cubic spline; (2) the spline is spectrally 
limited by the relation: a ak 0 ≤ π k k!,   k = 1,2,3. (3) a mass conservative 
flux renormalization is applied, and finally (4), a mildly diffusive filter is 
applied in an attempt to block the depletion of donor cells. 

A little
diffusive, 

 Yamatino (1993) 

Positive 
definite, non-
monotonic 

Advective 
form, Semi-
Lagrangian 
Transport 
(SLT) scheme 

SLT with 
cubic spline 
interpolation 

The Lagrangian solution to this equation determines the departure point 
(xD , yD)  of a particle at (xA A, y )  as (xD ,yD) = (xA − ∆t u, y − ∆A t v). 
This scheme first determines the midpoint of the trajectory iteratively as 
(xM

k +1, yM
k +1) = (xA −

∆t
2

u(xM
k , yM

k ),yA −
∆t
2

v(xM
k , yM

k ))  

Four iterations are used for the very first time step which starts with the 
arrival points as a first guess (for the midpoints) and one iteration 
thereafter where the midpoints from the previous time step are used as a 
first guess.  The velocities at the midpoints are calculated using Lagrange 
cubic interpolation.  Monotonicity is maintained by limiting the 
interpolated value. 

Diffusive, 
Positive 
definite 
Monotonic. 

Williamson and 
Rasch (1989) 

. I 
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