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Abstract: Information is given about model evaluation, the overall system of procedures designed 
to measure model performance, and in particular, the process of statistical performance 
evaluations.  Statistical performance evaluation is an assessment of model performance based on 
the comparison of model outputs with experimental data.  Some performance measures, consisting 
of statistical indices and graphical methodologies, currently used are described.  Problems related 
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1 Introduction 
 
Model quality assurance is a collection of activities one should perform in order 
to promote the development and application of good air quality simulation models 
(discussed in more detail in Section 8 below).  One of the elements of model 
quality assurance is model evaluation.  Model evaluation2  is a collection of 
activities one should perform in order to understand how a model behaves and 
how a model compares with observations (discussed in more detail in Section 6).  
                                                           
1  From 1975 to 2004, John Irwin was a NOAA employee, on assignment to the U.S. 

Environmental Protection Agency, Research Triangle Park, NC 27711. 
2  Readers will see that we have avoided the use of the term “validation”.  Fox (1981) and Olesen 

(1996) define “validation” as a conclusion resulting from detailed and copious evidence that 
leads to formal recognition, which might include several evaluations.   
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One of the elements of model evaluation is statistical model evaluation.  
Statistical model evaluation, also called “statistical performance evaluation”, is an 
assessment of model performance based on the comparison of model outputs with 
experimental data (discussed in more detail in Section 7).  
 
It is our experience and conclusion from a comprehensive review of past model 
evaluation exercises that it is not profitable to provide a “cookbook” with series of 
steps that one must accomplish in order to adequately implement a statistical 
model evaluation.  Models are used in a variety of ways, many of which were 
never anticipated when the model was first developed and made available.  
Models are often used in situations that, in principle, they are incapable of 
handling as they are lacking characterization of relevant physical processes.  For 
example, although most operational air quality models provide estimates of 
ensemble average concentrations, they are typically used to estimate maximum 
(peak) concentration values (which are extreme values within an ensemble). 
 
Instead of a series of steps, we provide a framework (Section 4) within which one 
can understand why modeling results and observations differ.  We believe that by 
following the ideas expressed in this framework, one can develop a successful 
evaluation of any model regardless of whether it is being applied in a manner 
consistent with its designed physics and modeling assumptions.  In Section 5, we 
summarize those performance measures that are in common usage, and then in 
Section 7, we discuss concepts that can be employed in developing a statistical 
model evaluation. 
 
 
2 Terminology 
 
A review of recent evaluation exercises reveals3 that various characteristics of 
atmospheric dispersion models have been tested, and often the methods have used 
application-specific schemes with various performance measures.  In fact, in the 
literature it is possible to find widely diverse definitions concerning topics related 
to model evaluation.  To avoid confusion and misunderstandings, we believe that 
it would be useful to achieve a harmonization about terminology and its use.  The 
etymology of the terms we use is important for understanding by both scientists 
and decision-makers.  Hence, we have tried not to depart too much from the 
etymological word meanings (Schlunzen, 1997).  

                                                           
3 Of the large available number, we list a few for example.  Methods/Review: U.S. Environmental 

Protection Agency (1992), Hanna et al. (1993), Poli and Cirillo (1993), Ward (1994), Weil et al. 
(1997), Long Range Transport: Bellasio et al. (1998), Brandt et al. (1998), Carhart et al. 
(1989), Mosca et al. (1998); Complex Terrain: Cox et al. (1998), Desiato (1991), Gronskei et 
al. (1993), Luhar and Rao (1994), Ross and Fox (1991), Thuillier (1992); Plume Dispersion: 
Brusasca et al. (1989), Carruthers et al. (1999), Hanna and Paine (1989), Hanna and Chang 
(1993), Olesen (1995), Regional Grid: Davis et al. (2000), Dennis (1986), Hanna et al. (1996), 
Hass et al. (1997), Kumar et al. (1994), Low Winds/Street Canyons: Kumar Yadav and Sharan 
(1996), Lanzani and Tamponi (1995), Okamoto et al. (1999). 
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Atmospheric air quality model: an idealization of atmospheric physics to 
calculate the magnitude and location of pollutant concentrations.  This may take 
the form of an equation, algorithm, or series of equations/algorithms used to 
calculate average or time-varying concentration.  They may take the form of a 
deterministic model or a statistical model.  The model may involve process 
descriptions and numerical methods for solution.  
 
Calibration (or model calibration): a procedure used to make, at the model 
development stage, estimates of the parameters of model equations, which best fit 
the general model structure to a specific observed data set. 
 
Data assimilation: a numerical technique, which makes it possible to combine 
model results and observations in one integrated system, with the purpose of 
minimizing the discrepancy between model predictions and observations. 
 
Data quality assessment: the scientific and statistical evaluation of data to 
determine if data obtained from environmental data operations are of the right 
type, quality and quantity to support their intended use. 
 
Data quality objective: a range of acceptability for data used in modeling 
analyses for a specific application.  
 
Deterministic model: a model is deterministic when it is assumed that all 
possible behaviors are determined by the set of equations comprising the model.  
These models are based on fundamental mathematical descriptions of atmospheric 
processes, in which effects (i.e., air pollution) are generated by causes (i.e., 
emissions). 
 
Diffusion, absolute: the characterization of the spreading of material released 
into the atmosphere based on a coordinate system fixed in space. 
 
Diffusion, relative: the characterization of the spreading of material released into 
the atmosphere based on a coordinate system that is relative to some local 
position of the dispersing material (e.g., center of mass). 
 
Dispersion: the combined effects of eddy diffusion and advection (transport). 
 
Evaluation (or model evaluation): the overall system of procedures designed to 
measure the model performance. 
 
Evaluation objective: a feature or characteristic which can be defined through an 
analysis of the observed concentration pattern (e.g., maximum centerline 
concentration or lateral extent of the average concentration pattern as a function 
of downwind distance) for which one desires to assess the skill of the models to 
reproduce. 
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Evaluation procedure: the analytical steps to be taken to compute the value of 
the evaluation objective from the observed and modeled patterns of concentration 
values. 
 
Fate: the destiny of a chemical or biological pollutant after release into the 
atmosphere. 
 
Model intercomparison: a process where several models, all presumably 
appropriate for some chosen situations (idealized or real), simultaneously have 
their performances assessed and compared. 
 
Performance measures (or statistical comparison metrics): evaluation tools 
(quantitative and/or qualitative) like statistical indices and graphical 
methodologies, used to compare model outputs with observed values. 
 
Process model: an idealization of atmospheric physics envisioned as being 
composed of a series of inter-related processes to calculate the magnitude and 
location of pollutant concentrations based on fate, transport, and diffusion in the 
atmosphere.  These models most often are deterministic models, but in principle, 
could attempt to characterize the stochastic process effects. 
 
Quality assurance: all those planned and systematic actions necessary to provide 
adequate confidence that a product or service will satisfy given requirements for 
quality. 
 
Sensitivity analysis: a process for identifying the magnitude, direction, and form 
(e.g., linear or non-linear) of the effect of the variation of one or more model 
parameters or model inputs on the model result. 
 
Statistical model: a model of a stochastic process that represents the dependence 
of successive or neighboring events in response to variation in an external 
influence on the process.  These models are parsimonious using the fewest 
number of parameters capable of explaining quantitative variation in some 
observed data.  They are based upon semi-empirical statistical relations among 
available data and measurements. 
 
Statistical model evaluation: the analysis of model performance based on the 
comparison of model outputs with experimental data (evaluation objectives).  
Statistical model evaluations involve summarizing model performance in an 
overall sense (typically called performance evaluation), and testing the simulation 
of specific processes within a model (typically called diagnostic evaluations). 
 
Stochastic process: a continuous causal process in time, space, or both, 
responding to variation in an external influence, and producing a varying series of 
measured states or events. 
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Uncertainty: a difference (or differences) between what is modeled and what is 
observed.  It is a consequence of a lack of knowledge in model formulation, and 
errors (or omissions) in data and observations.  In principle, uncertainty can be 
reduced with either improved theory or observations; however, it is generally 
accepted that there is a limit to how much of the natural variability can be 
explicitly simulated by models.  The portion of natural variability that is beyond 
the reach of modeling is referred to as inherent variability4. 
 
Uncertainty analysis: a process for estimating model uncertainty. 
 
Variability: is what happens in the natural system; the observable variations. 
 
Verification: is the checking of the computer code to ensure that it is a true 
representation of the conceptual model upon which it is based.  This includes 
checking whether the mathematical equations involved have been solved correctly 
and comparing the numerical solutions with idealized cases for which an analytic 
solution exists. 
 
 
3 Background 
 
Air quality simulation models have been used for many decades to characterize 
the transport and diffusion of materials in the atmosphere (Pasquill, 1961; 
Randerson, 1984; Hanna et al., 1982).  The wider use of atmospheric models in 
scientific studies for regulatory purposes and for describing air quality scenarios 
requires assessing the degree of reliability of model results.  Generally, such an 
assessment is performed through the comparison of model outputs against field 
measurements.  Tracer experiments are particularly helpful in evaluating the 
capability of these models to properly simulate transport and diffusion.  
Comparisons between model outputs and measurements are performed using both 
qualitative data analysis techniques and quantitative statistical methods. 
 
Up until the early 1980s, comparing modeling results with observations was 
considered simple.  The outputs of dispersion models were plotted against 
measurements (using traditional scatter plots of the values) and simple 
performance measures such as the correlation coefficient were computed (Clarke, 
1964; Martin, 1971; Hanna, 1971).  High correlation values were interpreted as an  
indication that the model was performing well; low correlation (a not uncommon 
case) was interpreted to mean that the model was performing poorly. 
 
As air quality models came into more common use, concerns were raised that 
early statistical performance evaluation had been naive.  Little consideration had 
been given to the consequences and sources of uncertainty and variability.  As 

                                                           
4 What we are labelling “inherent variability” is what Fox (1984) and others discuss as “inherent 

uncertainty”, and what Hanna (1993) discuss as the “irreducible scatter caused by stochastic 
fluctuations”. 
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discussed in Sections 4 and 6, the sources of uncertainty can be envisioned as 
being composed of: model formulation uncertainty, representativeness 
uncertainty, measurement uncertainty, and inherent variability4. 

• Model formulation uncertainty is composed of theory uncertainty  (there 
may be more than one theory that adequately describes available data) and 
numerical uncertainty (conversion of mathematical algorithms to 
numerical code may involve approximations that could lead to spurious 
noise in the solutions if not well-treated); 
 

• Representativeness uncertainty arises whenever there is a lack of 
agreement in the data used as model input or the data used for comparison 
with model output5 to satisfy the spatial and temporal assumptions of the 
model; 
 

• Measurement uncertainty results from errors in measurements, which can 
affect model inputs 6  and can affect observed concentrations used for 
comparison with model outputs; 
 

• Inherent variability arises because models only characterize a portion of 
the naturally occurring variations. 

 
In the early comparisons, measurement uncertainties were assumed to be small in 
comparison to the “real world fluctuations”, when in fact that was not always a 
safe assumption.  More importantly, even hypothetically error-free measurements 
possess space and time limitations that prevent them from being good 
approximations of the time and space assumptions used in the construction of the 
model.  For instance, the comparison of measurements taken at an isolated 
receptor with grid-averaged model outputs is inappropriate (Davis et al., 2000). 
 
The early statistical performance evaluations failed to address the fact that models 
provide estimates of ensemble means, whereas the observations are individual 
realizations from imperfectly defined ensembles (Lamb from Longhetto, 1980; 
Venkatram, 1988).  Furthermore, reliance on linear regressions and correlation 
coefficient can provide misleading results (Zannetti and Switzer, 1979).  Lastly, 
models rely on emission and meteorological inputs whose uncertainties could 
justify disagreements between predictions and observations (Irwin et al., 1987). 
 
In the early eighties, several attempts were made to develop standard 
methodologies for judging air quality model performance (Bornstein and 
Anderson, 1979; Venkatram, 1982 and 1983; Willmot, 1982).  The American 

                                                           
5 Differences from not properly satisfying the model input assumptions are referred to by some as 

“data representativeness uncertainty”, and by other as “input uncertainty”; differences in 
properly satisfying the model output assumptions are most often referred to as “data 
representativeness uncertainties”.  

6 Uncertainties in emission data may result from measurement or formulation uncertainties since a 
wrong methodology might have been used for emission estimation. 
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Meteorological Society sponsored two workshops in an attempt to provide 
specific guidelines on the use of statistical tools in air quality applications.  A 
summary of their recommendations is provided in two papers by Fox (1981, 
1984). 
 
The most interesting comments and recommendations from the above workshops 
were: 
 

• the concern about the absolute, rather than statistical nature of U.S. air 
quality standards 

• the possibility of computing statistics between measured data values and 
model predicted values even when these values are not coupled in time 
and/or in space 

• the identification of reducible errors and inherent variability 
• the recommendations to decision-makers to educate themselves and accept 

the challenge of decision making with quantified uncertainty 
 
Following these two workshops, a series of studies were undertaken to continue to 
investigate the problem of statistically evaluating the performance of air quality 
models.  Interesting methods were proposed at the DOE Model Validation 
Workshop, October 23-26, 1984, Charleston, South Carolina, and by Alcamo and 
Bartnicki (1987) and Hanna (1989a).  Major operational evaluations of air quality 
models were sponsored by EPRI (Reynolds et al., 1984; Ruff et al., 1984; Moore 
et al., 1985; Reynolds et al., 1985). 
 
Further development of the evaluation methodologies proposed in the early 
eighties was needed, as it was found that the rote application of performance 
measures, such as those listed in Fox (1981), was incapable of discerning 
differences in model performance (Smith, 1984).  Whereas if the evaluation 
results were sorted by stability and distance downwind, then differences in 
modeling skill could be discerned (Irwin and Smith, 1984).  It was becoming 
increasingly evident that the models were characterizing only a small portion of 
the observed variations in the concentration values (Hanna, 1988).  To better 
deduce the statistical significance of differences seen in model performance in the 
face of small sample sizes and unknown uncertainties, investigators began to 
explore the use of bootstrap techniques (Hanna, 1989).  By the late 1980s, most of 
the model evaluations involved the use of bootstrap techniques in comparing the 
maximum values of modeled and observed cumulative frequency distributions of 
the concentration values (Cox and Tikvart, 1990). 
 
Even though the procedures and measures are still evolving to describe 
performance of models that characterize atmospheric fate, transport and diffusion 
(Weil et al., 1992; Dekker et al., 1990; Cole and Wicks, 1995), there has been a 
general acceptance for a need to address the large uncertainties inherent in 
atmospheric processes.  There has also been a consensus reached on the 
philosophical reasons that models of earth science processes can never be verified 
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(in the sense of claiming that a model is truly representative of natural processes).  
General empirical proposition about the natural world cannot be certain since 
there will always remain the prospect that future observations may call the theory 
in question (Oreskes et al., 1994).  It is seen that numerical models of air pollution 
are a form of a highly complex scientific hypothesis concerning natural processes 
that can be confirmed through comparison with observations, but never verified.   
 
 
4 Framework 
 
To set the context for the following discussion (Irwin, 2000), it is important to 
realize that most of the model evaluation results currently available in the 
literature are for applied air quality models that use ensemble average 
characterizations of the transport and diffusion, the chemical transformations, and 
the physical removal processes.  Thus, these applied air quality models only 
provide a description of the average fate of pollutants to be associated with each 
possible ensemble of conditions (or “regime”).  Natural variability that is not 
characterized by the model can result in large deviations when comparing 
individual observations (which are individual realizations from an ensemble of 
realizations) with modeling results (which are characterizing the ensemble 
average result). 
 
The differences seen in comparison between model predictions and observations 
of atmospheric air concentrations may largely reflect inherent variability.  Likely, 
this component of variability is inherent in that it cannot be simulated explicitly 
by improving the physics of the air quality models.  At best, air quality models 
provide an unbiased estimate of the average concentration expected over all 
realizations of an ensemble.  An estimate of an ensemble can be developed from a 
set of experiments having fixed external conditions (Lumley and Panofsky, 1964).  
To accomplish this, the available concentration values are sorted into classes 
characterizing ensembles.  For each of the ensembles thus formed, the difference 
between the ensemble average and any observed realization (experimental 
observation) is then ascribed to inherent variability where its variance, σn

2, can be 
expressed as (Venkatram, 1988): 
 

( )2
2 oo
n CC −=σ  (1) 

 
where Co is the observed concentration seen within a realization; the over-bars 
refer to an average over all available realizations within a given ensemble, so that 

oC is the estimated ensemble average.  In (1), the ensemble refers to the ideal 
infinite population of all possible realizations meeting the (fixed) characteristics 
of the chosen ensemble.  In practice, we will only have a small sample from this 
ensemble.  Measurement uncertainty in Co in most tracer experiments is typically 
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a small fraction of the measurement threshold, and when this is true, its 
contribution to σn can usually be deemed negligible.  
 
Defining the characteristics of the ensemble in (1) using the model’s input values, 
α, one can view the observed concentrations as: 
 

( ) ( ) ( ) ( )βααβα ,, cccCCC ooo +∆+==  (2) 
 
where β are the variables needed to describe the unresolved transport, fate and 
diffusion processes. The over-bar represents an average over all possible values of 
β for the specified set of model input parameters α; c(∆c) represents the effects of 
concentration representativeness and measurement uncertainty, and c(α,β) 
represents ignorance in β, unresolved deterministic processes and stochastic 
fluctuations (Hanna, 1988; Venkatram, 1988).  Since ( )αoC  is an average over all 

β, it is only a function of α, and in this context, ( )αoC  represents the ensemble 
average that the model is ideally attempting to characterize. 
 
The modeled concentrations, Cs, can be envisioned as: 
 

( ) ( ) ( ) ( )αααα fdCCC oss +∆+==   (3) 
 
where d (∆α) represents the effects of uncertainty in specifying the model inputs 
and f(α) represents the effects of uncertainty in the model theory and numerical 
implementation.  
 
The method we propose for performing an evaluation of modeling skill is 
separately averaging the observations and modeling results over a series of non-
overlapping limited-ranges of α, which are called “regimes”.  Averaging the 
observations provides an empirical estimate of what most of the current models 

are attempting to simulate, ( )αoC .  A comparison of the respective observed and 
modeled averages over a series of α-groups provides an empirical estimate of the 
combined deterministic error associated with input uncertainty and formulation 
errors. 
 
Given this framework, designing a model evaluation can be envisioned as a two-
step process.  Step one, we analyze the observations to provide average patterns 
for comparison with modeled patterns.  Step two, given the uncertainties in 
estimating the average patterns, we test to see whether differences seen in a 
comparison of performance of several models are statistically significant.  In 
order to place confidence bounds on conclusions reached in step two, bootstrap 
resampling is recommended (see Section 5.4).  Within the American Society for 
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Testing and Materials (ASTM), a standard guide 7  has been developed that 
outlines this strategy for designing statistical evaluations of dispersion model 
performance (a statistical evaluation of performance). 
 
This process is not without problems, as grouping data together for analysis 
requires large data sets of which there are few.  Sorting the data into groups 
requires sufficient knowledge of the experimental conditions to determine how 
the data collected on different days or during different time periods should be 
grouped together.  In reality, the external forcing conditions are imperfectly 
known, and hence the groups are imperfectly composed. 
 
Another problem is that air quality models only explain a small portion of the 
observed variations, and there are large uncertainties involved in any air quality 
modeling assessment.  Earlier in this chapter, we mentioned that there are 
essentially four sources of uncertainty: formulation uncertainty, 
representativeness uncertainty, measurement uncertainty, and inherent variability.  
We now take a moment to provide some perspective as to the size and nature of 
inherent variability and model input uncertainty. 
 
From Equation (2), we see that natural variation that is not explained by the 
model is the term c(α,β), and we have referred to this as the inherent variability.  
It has been estimated that the portion of natural variability that is not accounted 
for by atmospheric transport and diffusion models is of order of the magnitude of 
the regime averages (Weil et al., 1992; Hanna, 1993).  Thus, small sample sizes in 
the groups, which are used in the statistical evaluation to form pseudo-ensembles, 
could lead to large uncertainties in the estimates of the ensemble averages.  
 
An illustration of unexplained concentration variability is presented in Figure 1.  
Project Prairie Grass (Barad, 1958; Haugen, 1959) is a classic tracer dispersion 
experiment where sulfur-dioxide (SO2) was released from a small tube placed 46 
cm above the ground.  Seventy 20-minutes releases were conducted during July 
and August 1956, in a wheat field near O’Neil, Nebraska.  Sampling arcs were 
positioned on semicircles centered on the release, at downwind distances of 50, 
100, 200, 400 and 800 m.  The samplers were positioned 1.5 m above the ground, 
and provided 10-minute concentration values.  For the purpose of illustrating 
concentration variability, two small ensembles of six experiments along the 400-
m arc have been grouped together in Figure 1 using the inverse of Monin-
Obukhov length, L, a stability parameter (as 1/L approaches zero, the surface 
layer of the atmosphere approaches neutral stability conditions).  Concentration 
values from near-surface point sources are inversely proportional to the transport 
wind speed, U, and directly proportional to the emission rate, Q.  To group the 
results of the six experiments together, the concentration values were normalized 
by multiplying the concentration values by U/Q, where U was defined as the 

                                                           
7 Standard Guide for the Statistical Evaluation of Atmospheric Dispersion Model Performance, 

D6589, Annual Book of Standards Volume 11.03, American Society for Testing and Materials, 
West Conshohocken, PA 19428 (http://www.astm.org). 

http://www.astm.org/
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value observed at 8 m above the ground.  The solid line shown for each group is a 
Gaussian fit to the results for the six experiments in the group.  The scatter of the 
normalized concentration values about this Gaussian fit can be statistically 
analyzed to provide an estimate of the concentration variability not characterized 
by the Gaussian fit.  From this analysis and other tracer studies, the stochastic 
fluctuations (inherent variability) were investigated by analyzing the distribution 
of oo CC  for centerline concentration values.  The distribution was found to be 
approximately lognormal, with a standard geometric deviation of order 1.5 to 2 
(Irwin and Lee, 1997; Irwin, 1999).  These results suggest that centerline 
concentration values from individual experiments may typically deviate from the 
ensemble average maximum by as much as a factor of two.  
 

 
 

Figure 1.  Near-neutral unstable (left) and near-neutral stable (right) normalized 
concentration values at the 400-meter arc.  The neutral-unstable experiments are 
6, 11, 34, 45, 48 and 57, with Monin-Obukhov lengths ranging from -263 m to 
-82 m.  The neutral-stable experiments are 21, 22, 23, 24, 42, and 55, with Monin-
Obukhov lengths ranging from 164 m to 359 m. 

 
The use of wind tunnel measurements can be useful towards providing data for a 
model evaluation process (Schatzmann and Leitl, 1999).  The work of Stein and 
Wyngaard (2000) investigates the relationship between inherent variability in 
laboratory and atmospheric boundary layer flows.  For a given averaging time, 
they show that the inherent variability in laboratory flows is smaller than in the 
atmospheric boundary layer flows under the same stability and statistical 
conditions. 
 
Characterizing the model input is another source of uncertainty.  The variance in 
modeled concentration values due to input uncertainty can be quite large.  Using a 
Gaussian plume model, Irwin et al. (1987) investigated the uncertainty in 
estimating the hourly maximum concentration from elevated buoyant sources 
during unstable atmospheric conditions due to model input uncertainties.  A 
numerical uncertainty analysis was performed using the Monte-Carlo technique to 
propagate the uncertainties associated with the model input.  Uncertainties were 
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assumed to exist in four model input parameters: wind speed, standard deviation 
of lateral wind direction fluctuations, standard deviation of vertical wind direction 
fluctuations, and plume rise.  It was concluded that the uncertainty in the 
maximum concentration estimates is approximately double the uncertainty 
assumed in the model input.  For instance, if half of the input values are within 
30% of their error-free values, then half of the estimated maximum concentration 
values will be within 60% of their error-free values.  Using a photochemical grid 
model, Hanna et al. (1998) investigated the uncertainty in estimating domain-wide 
hourly maximum ozone concentration values near New York City for July 7-8, 
1988.  Fifty Monte-Carlo runs were made in which the emissions, chemical initial 
conditions, meteorological input and chemical reaction rates were varied within 
expected ranges of uncertainty.  The amount of uncertainty varied, depending on 
the variable.  Those variables with the least assumed uncertainty (most of the 
meteorological inputs) were assumed to be within 30% of their error-free values 
95% of the time.  Larger uncertainties were generally assumed for the emissions 
and reaction rates.  They found that the domain-wide maximum hourly averaged 
ozone ranged from 176 to 331 ppb (almost a factor of two range).  These two 
investigations reveal that the sensitivity to model input uncertainties is quite large, 
regardless of whether the model is a Gaussian plume model, a photochemical grid 
model, or whether the specie being modeled is inert or chemically reactive. 
 

 
 
Figure 2.  Illustration of displacement of observed (solid lines) and 
predicted (dashed lines) ground-level concentration patterns.  Isopleths 
represent points with the same concentration.  The point-by-point 
correlation is poor, but the patterns are clearly similar (adapted from 
Hanna, 1988 [Reprinted with permission from the Air Pollution Control 
Association]). 
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Irwin and Smith (1984) warned that the disagreement between the indicated wind 
direction and the actual direction of the path of a plume from an isolated point 
source is a major cause for disagreement between model predictions and 
observations.  As a plume is transported downwind, it typically expands at an 
angle of approximately 10 degrees, and this angle is seldom larger than 20 
degrees.  With such narrow plumes, even a 2-degree error in estimating the plume 
transport direction can cause very large disagreement between modeled and 
observed surface concentration values.  Weil et al. (1992) analyzed nine periods 
from the EPRI Kincaid experiments, where each period was about 4 hours long.  
They concluded that for short travel times (where the growth rate of the plume’s 
width is nearly linear with travel time), the uncertainty in the plume transport 
direction is of the order of 1/4 of the plume’s total width.  Farther downwind, 
where the growth rate of the plume’s width is less rapid, the uncertainty in the 
plume transport direction is larger than 1/4 of the plume’s total width.  Figure 2 
illustrates that any point-to-point comparison of modeled and observed 
concentration values (e.g., correlation, bias, mean squared error) would suggest 
poor performance. It is clearly seen that the basic pattern is modeled well if the 
observed pattern is shifted over to better correspond with that modeled.  In 
conclusion, the uncertainties of plume transport direction are substantial, and 
likely will preclude, especially for isolated source comparisons, a meaningful 
evaluation of modeled and observed concentration values paired in time and 
space. 
 
This section presented a framework providing a means for understanding why 
modeled and observed values differ.  The observations are envisioned as being 
composed of an ensemble mean about which there are deviations either resulting 
from representativeness and measurement uncertainty, or uncharacterized natural 
variability, c(α,β).  Examples were provided that suggest that for maximum 
surface concentrations, uncharacterized variability, c(α,β), is on the order of the 
ensemble mean, (i.e., could easily account for factor of two deviations from the 
mean).  The model values are envisioned as being composed of an ensemble mean 
about which there are deviations either resulting from input (representativeness 
and measurement) uncertainty, or model theory and numerical implementation 
errors.  Examples were provided that suggest that the effects of input uncertainty 
can be amplified within the model (e.g., doubled), and can lead to variations on 
the order of a factor of two.  As a pragmatic mean for assessing systematic errors 
in the model formulations, it was recommended that pseudo-ensembles be formed 
by grouping evaluation data into time periods where conditions can be assumed to 
be similar. Then it was recommended that comparisons be made of the group 
averages, because this insulates the comparisons from many of the sources of 
uncertainties. Other issues will be addressed, such as how to cope with 
uncertainties in the direction of transport, as discussed in Section 7.  First, we will 
discuss in the next section the kinds of performance measures one might choose 
in developing an evaluation procedure. 
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5 Performance Measures  
 
The preceding section described a philosophical framework for understanding 
why observations differ from model simulation results.  This section provides 
definitions of the performance measures and methods often employed in current 
evaluations of air quality models.  Proper model evaluation involves the 
application of both statistical indices and graphical methodologies.  The list of 
possible performance measures is extensive (e.g., Fox, 1981), but it has been 
illustrated that a few well-chosen simple-to-understand performance measures can 
provide adequate characterization of a model’s performance (e.g., Hanna, 1988).  
Therefore, the selection of performance measures to compare model outputs 
against observed values is a fundamental step.  Statistical indices and graphical 
methodologies emphasize specific model characteristics (e.g., Canepa and 
Builtjes, 1999); therefore, outlining the characteristics of each performance 
measure is useful.  The following discussion is not meant to be exhaustive.  The 
key is not in how many performance measures are used, but is in the statistical 
design used when the performance measures are applied (e.g., Irwin and Smith, 
1984). 
 
For convenience, we discuss the comparison of the observed and modeled 
concentration values in the following discussion.  In reality, model evaluation can 
involve comparisons of observed and modeled plume rise, building wake 
dimensions, etc.  Any feature (evaluation objective) that can be deduced from an 
analysis of the concentration pattern and converted to a numeric value can be 
substituted for the word “concentrations” in the following discussion. 
 
5.1 Basic Performance Measures 
 
MEAN of both the observed and simulated concentrations is defined as: 
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where N is the total number of the values being averaged,  ( ) is the io
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iC th  

observed (simulated) concentration value.  A perfect model would give 
.  Note, the values being averaged may be for the 

same time period (an average over a set of receptors), or the values being 
averaged may be at a fixed receptor location, either relative or absolute (an 
average over some time period). 

simulatedobserved MEANMEAN =

 
SIGMA (standard deviation) of both the observed and simulated concentrations is 
defined as: 
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a perfect model would give simulatedobserved SIGMASIGMA = . 
 
5.2 Description of Some Paired Performance Measures 
 
Often the evaluation procedure involves a comparison that logically involves 
pairing of the observed and modeled values.  This might be: the maximum 
concentration over a domain seen for an hour or a day, or the maximum 
concentration seen on receptor arcs centered on a tracer release location, etc. 
 
It is not possible to assume that uncertainty in both the observations and the 
modeled values is small in comparison to the variations seen in their mean values 
(Irwin et al., 1987; Weil et al., 1992; Hanna, 1993; Hanna et al., 1998).  Unless 
the uncertainties are small in comparison to the variations in their mean values, 
one cannot confidently make comparisons of raw observations with modeled 
values.  
 
However, the paired comparison of group averages is meaningful, especially if 
the groups are well formulated and provide representative estimates of the 
ensemble average concentration for each group. 
 
BIAS is defined as: 
 

os CCBIAS −=  (7) 

 
A perfect model would give BIAS = 0. If BIAS > 0 (< 0), the model on average 
overestimates (underestimates) the observed concentrations.  We have followed 
here and elsewhere the convention that a positive BIAS indicates a model over-
prediction.  This has been found to be better understood by decision-makers and 
users of model evaluation results (whereas, having to explain a negative BIAS as 
a model over-prediction was a constant problem).  We mention this because one 
may find in some literature that the opposite convention is sometimes used. 
 
FB (Fractional Bias) is defined as: 
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FB ranges between – 2 and + 2.  For a perfect model, FB = 0. If FB > 0 (< 0), the 
model on average overestimates (underestimates) the observed concentration 
values. 
 
The MEAN, BIAS and FB only characterize the “on average” model behavior.  
One can directly judge the average model performance by looking at the 
MEANobserved and MEANsimulated values simultaneously.  From the value of the 
BIAS, one has an idea of whether the model underestimates (BIAS < 0) or 
overestimates (BIAS > 0) the observed values.  However, the BIAS value does 
not convey any sense of how large the average difference is relative to the average 
magnitude of the observed values.  For example, if one is dealing with two data 

sets, characterized by 10=o
AC and 100=o

BC (in appropriate units), and using a 

model obtains 20=s
AC  and 110=s

BC , the BIAS value, in both cases, is 10.  
However, the “on average” behavior of the model is better in case B, because the 
percentage difference is less in case B.  To address this issue, the FB can be 

helpful.  The FB is the BIAS normalized by the average value of oC and sC .  As 
far as the previous example is concerned, FBA = 0.67 and FBB = 0.095.  Thus,  
better model performance is evident in case B. 
 
FS (Fractional Standard deviation) is defined as: 
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FS ranges between – 2 and + 2.  For a perfect model, FS = 0. If FS > 0 (< 0), the 
spreading of the simulated concentration values is larger (smaller) than the 
spreading of the observed concentration values.  
 
The SIGMA and FS provide information about the spread (variance) in the 
modeled and observed concentration values.  One can directly judge the model 
performance looking at the SIGMAobserved and SIGMAsimulated values 
simultaneously.  The FS index is analogous to the FB index, except it is only 
related to the relative difference in the variances. 
 
COR (linear CORrelation coefficient) is defined as: 
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which ranges between – 1 and + 1 and a perfect model would give COR = + 1. 
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COR provides information on the strength of the linear correlation between the 
modeled and the observed concentration values.  For a value of + 1, the so-called 
“complete positive correlation”, there is correspondence between all pairs of 
modeled and observed concentration values ( ).  If the values were plotted 
against one another in a scatter diagram, all points would lay along a straight line 
with positive slope.  The “complete negative correlation” corresponds to all the 
pairs on a straight line with negative slope, and COR = – 1.  A value of COR near 
zero indicates the absence of linear correlation between the variables.  A model 

will have COR = + 1 if 

s
i

o
i CC ,

ss
i

oo
i CCCC −=−  for any ( ).  Because it is 

possible that 

s
i

o
i CC ,

so CC ≠ , the previous equality does not mean  for any 

( ) as we should expect for a perfect model.  Furthermore, it should also be 
pointed out that a high correlation coefficient does not necessarily indicate a 
direct dependence between the variables. Two variables may have no true 
relationship to one another, but may be correlated to a third variable (“spurious 
correlation”). 
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FA2 (fraction within a FActor of 2) is defined as: 
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A perfect model would give FA2 = 1. 
 
NMSE (Normalized Mean Square Error) is defined8: 
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where o
i

s
ii CCk =  and oo

ii CCs = ; a perfect model would give NMSE = 0. 
The value of this index is always positive. 
 
WNNR (Weighted Normalized mean square error of the Normalized Ratios) is 
defined as:  

                                                           
8 RMSE (Root Mean Square Error) is defined: 

2)( os CCRMSE −= .  A perfect model would give a RMSE = 0, and the value of this index 
is always positive.  Note, preference is given to using the RMSE rather than the NMSE when 

there are large uncertainties in oC  (which typically occurs when the observed concentration 
values are close to the measurement threshold). 
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where ii kk 1ˆ =  (if ki > 1) and  (if ii kk =ˆ 1≤ik ). A perfect model would give 
WNNR = 0. The value of this index is always positive. 
  
NNR (Normalized mean square error of the distribution of Normalized Ratios) is 
defined as: 
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A perfect model would give NNR = 0. The value of this index is always positive. 
 
The FA2, NMSE, WNNR and NNR indices give information about the ratios 
between simulated and measured concentrations.  Only the FA2 and NNR indices, 
out of all indices considered, depend solely on the ratios between simulated and 
measured concentrations, and not on the data set itself, so they are the only 
indices strictly usable to compare simulations of different experiments.  NMSE 
attributes more weight to model errors concerning the estimates of the highest 
measured concentrations in some cases, of the lowest ones in other cases; WNNR 
attributes more weight to model errors concerning the estimates of the highest 
measured concentrations; and NNR attributes the same weight to model errors 
independently of the position of the data within the concentration range (Poli and 
Cirillo, 1993; Canepa and Modesti, 1997). 
 
SCATTER DIAGRAM, FOEX, and FAα again give information about the 
ratios between simulated and measured concentrations.  SCATTER DIAGRAM is 
a graph where predicted values are plotted versus measured ones (see Figure 3).  
The y = x line represents the perfect agreement between predictions and measured 
values.  A value above (below) the y = x line indicates a situation of over-
prediction (under-prediction).  FOEX is defined as 
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where  is the number of over-predictions (i.e. the number of pairs 

where ).  It ranges between – 50% and + 50%.  If FOEX = – 50%, all the 
points are below the y = x line and if FOEX = + 50%, all the points are above the 
y = x line.  The best value is 0%, which means that there are half under-
predictions and half over-predictions.  FOEX does not take into account the 
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magnitude of the over-predictions; it evaluates only the number of events of over-
prediction.  Representing the scatter diagram on logarithmic paper, the FAα band 
is the region between the two lines of equation ( ) ( )αln00 ±−=− xxyy , where x0 
and y0 are the coordinates of the origin of the axes.  If α = 2, then FAα = FA2 (see 
above). 
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Figure 3.  Example of SCATTER DIAGRAM: linear axes (left), log axes (right). 

 
PERCENTILES and BOX PLOT give information about the cumulative 
probability.  The nth percentile of a distribution of values is defined as the 
cumulative probability in percent, that is, the value that bounds the n% of values 
below and the (100 – n)% above it.  Looking at the box plot (see Figure 4), the 
general features of the distribution of the considered values can be distinguished. 

 
Figure 4.  Example of o

i
s
i CC BOX PLOTS stratified with respect to the 

distance from the source. 
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Figure 5.  Example of FMS [from Graziani et al. (1998), courtesy of 
EI/JRC]. 

 
 
FMS (Figure of Merit in Space) gives information about the space analysis (see 
Figure 5), and is defined as 
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FMS is calculated at a fixed time for a fixed concentration level (significant 
level).  FMS is the percentage of overlap between the measured (A1) and 
predicted (A2) areas.  A shift in space of the concentration patterns can reduce the 
FMS significantly (e.g., Figure 2). 
 
FMT (Figure of Merit in Time) gives information about the time analysis, and is 
defined as 
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FMT is calculated at a fixed location x  for a time series of data.  FMT evaluates 
the overlap of the observed and predicted concentration patterns in time.  A 
temporal shift of the time series can reduce the FMT significantly. 
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5.3 Description of Some Unpaired Performance Measures 
 
An evaluation procedure often involves a comparison that logically involves 
unpairing of the observed and modeled values.  An underlying assumption here is 
that we have two samples, presumably drawn from the same distribution.  If the 
samples are representative and from the same distribution, then they should both 
have similar distributions.  We have shown in Equations (2) and (3) that the 
observed and modeled concentration values have different sources of variance, 
and thus are not from the same distribution.  However, if we have groups that are 
well-formulated and provide representative samples for a series of ensembles, 
then we can anticipate that the observed and modeled group averages are from the 
same underlying distribution, and hence have similar frequency distributions. 
 
The QUANTILE-QUANTILE PLOT is constructed by plotting the ranked 
concentration values against one another (e.g., highest concentration observed 
versus the highest concentration modeled, etc.; see Figure 6).  If the observed and 
modeled concentration frequency distributions are similar, then the plotted values 
will lie along the 1:1 line on the plot.  By visual inspection, one can easily see if 
the respective distributions are similar, and whether the observed and modeled 
concentration maximum values are similar. 
 

 
 

Figure 6.  Example of QUANTILE-QUANTILE PLOTS comparing: on the 
left side, observed and modeled centerline concentration values (not 
recommended); on the right side, observed and modeled regime average 
centerline concentration values (as recommended by the ASTM guide cited 
in Section 4). 
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Figure 7.  Example of CUMULATIVE FREQUENCY PLOTS comparing: 
on the left side, observed and modeled centerline concentration values (not 
recommended); on the right side, observed and modeled regime average 
centerline concentration values (as recommended by the ASTM D6589 cited 
in Section 4). 

 
The CUMULATIVE FREQUENCY PLOT (Figure 7) is constructed by plotting 
the ranked concentration values (lowest to highest) against the plotting position 
frequency, f (typically in percent), where p is the rank (1 = lowest), N is the 
number of values and f is defined as (Larsen, 1969): 
 

( ) 2for6.0%100%100 NpNpNf >+−−=   
(18) 

( ) 2 pfor 4.0%100 NNpf <−=  
 
As with the QUANTILE-QUANTILE PLOT, a visual inspection of the respective 
CUMULATIVE FREQUENCY DISTRIBUTION PLOTS (observed and 
modeled) is usually sufficient to suggest whether the two distributions are similar, 
and whether there is a bias in the model to over- or under-estimate the maximum 
concentration values observed.   
 
The RHC (Robust Highest Concentration) index is often used where comparisons 
are being made of the maximum concentration values, and is envisioned as a more 
robust statistical test than direct comparison of maximum values.  The RHC is 
based on an exponential fit to the highest R - 1 values of the cumulative frequency 
distribution, where R is typically set to 26 for frequency distributions involving a 
year’s worth of values (averaging times of 24 hours or less) (Cox and Tikvart, 
1990).  The RHC is computed as: 
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where Θ  is the average of the R-1 largest values minus C(R), and C(R)  is the Rth 
largest value.  The value of R may be set to a lower value when there are fewer 
values in the distribution to work with; the RHC of the observed and modeled 
cumulative frequency distributions are often compared using an FB index, see 
Cox and Tikvart (1990). 
 
5.4 Bootstrap Resampling 
 
The standard analytical formulas for confidence intervals on performance 
measures from statistics textbooks may be inappropriate (Fox, 1984) since air 
quality data and model performance measures are not necessarily normally-
distributed nor can they always be transformed to a normal distribution.  The 
bootstrap resampling procedure (Heidam, 1987; Hanna, 1989; Cox and Tikvart, 
1990; Efron and Tibshirani, 1993) was suggested as an alternative method, since 
it did not depend on the form of the underlying distribution function. 
 
Following the description provided by Efron and Tibshirani (1993), suppose one 
is analyzing a data set , which for convenience is denoted by the 
vector .  A bootstrap sample, , is obtained by 
randomly sampling n times with replacement from the original data points 

.  For instance, with 

x,...x,x n21

)x,...x,x(=x n21 )x,...x,x(=x n21
****

)x,...x,x(=x n21 7=n one might obtain 
.  From each bootstrap sample, one can compute 

some statistics s (median, average, RHC, etc.).  By creating a number of bootstrap 
samples, m, one can compute the mean, 

)x,x,x,x,x,x,x(=x 1374575
*

s , and standard deviation, σ s , of the 
statistic of interest.  For estimation of standard errors, m is typically on the order 
of 50 to 500. 
 
Often, the bootstrap resampling procedure can be improved by blocking the data 
into two or more blocks or sets, with each block containing data having similar 
characteristics.  This prevents the possibility of creating an unrealistic bootstrap 
sample where all the members are the same value (Hanna, 1989). 
 
When performing model evaluations and model intercomparisons, for each hour 
there are not only the observed concentration values, but also the modeling results 
from all the models being tested.  In such cases, the individual members, x , in 
the vector  are vectors themselves, composed of the observed 
value and its associated modeling results (from all models, if there are more than 
one).  Thus, the selection of the bootstrap sample x

i
)x,...x,x(=x n21

* also includes each model’s 
estimate for this case. 
 
For example, suppose confidence limits are desired on the NMSE calculated from 
a set of n couples (Cs, Co), where Cs is the model simulation estimate and Co is 
the corresponding observed value.  In the bootstrap procedure, a new set of n 
couples (Cs, Co) is randomly drawn from the original set.  If a given (Cs, Co) is 
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drawn, it is replaced before the next draw is made.  Thus, it is possible (but not 
very probable) that all n “draws” consist of the same couple (Cs, Co).  For each 
resample set of size n, the NMSE is calculated.  If m resamples are drawn, the 
cumulative distribution function of the m values of NMSE will provide estimates 
of confidence limits on NMSE.  For example, the 95% confidence interval on 
NMSE will range from 2.5% to 97.5% points on the NMSE distribution. 
 
For assessing differences in model performance, one often wishes to test whether 
the differences seen in a performance measure computed between Model #1 and 
the observations (say, ), is significantly different when compared to that 
computed for another model (say Model #2, NMSE ) using the same 
observations.  For testing whether the difference between performance measures 
is significant, the following procedure is recommended.  Let each bootstrap 
sample be denoted 

NMSE1

2

x*b , where “*” indicates this is a bootstrap sample and “b” 
indicates this is sample b of a series of bootstrap samples (where the total number 
of bootstrap samples is B).  From each bootstrap sample, x*b , one computes the 
respective values for NMSE  and .  The difference 

 can then be computed.  Once all B samples have been 

processed, compute from the set of B values of , the average 
and standard deviation, 

b
1 NMSEb

2

NMSE-NMSE= *b
2

*b
1

*b∆

),...,(= *B*2*1* ∆∆∆∆
∆  and σ ∆ .  The null hypothesis is that ∆  is not equal to 

zero with a stated level of confidence, α, and the t-value for use in a Student’s t-
test is: 
 

∆

∆
=

σ
t  (20) 

 
For illustration purposes, assume the level of confidence is 90% (α = 0.1).  Then 
for large values of B, if the t-value from the above equation is larger than 
Student’s tα/2 equal to 1.645, it can be concluded with 90% confidence that ∆  is 
not equal to zero, and hence there is a significant difference in the NMSE values 
for the two models being tested. 
 
 
6 Model Evaluation 
 
Model evaluation is one of the elements of model quality assurance (see Section 
8).  Model evaluation is itself a system of procedures designed to measure 
performance (Model Evaluation Group, 1994a, 1994b; U.S. Environmental 
Protection Agency, 1997).  Following Borrego et al. (2001b), model evaluation is 
composed of: model algorithm verification, sensitivity analysis, uncertainty 
analysis, statistical model evaluation, and model inter-comparison.  Therefore, 
statistical model evaluation is one of the fundamental steps to achieve model 
evaluation. 
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• Model algorithm verification is the process of checking the computer code 
to ensure the code is a true representation of the conceptual model on which it 
is based.  This includes: checking that the mathematical equations involved 
have been solved correctly, and comparing numerical solutions with idealized 
cases for which an analytic solution exists (“verification of numerical 
solutions”) to demonstrate that the two match over the particular range of 
conditions under consideration. 

 
• Sensitivity analysis is a process of characterizing the response of a model to 

changes in input and parameter values.  The purpose is to identify the 
magnitude, direction, and form (e.g., linear or non-linear) of the effect of such 
variations.  Sensitivity tests can be performed with respect to: 1) uncertainty 
of physics/chemistry model parameters, and 2) uncertainty of emission and 
meteorological model input data.  In either case, one can use two methods: a) 
systematically vary one or more of the model inputs to determine the effect on 
the modeling results (Hilst, 1970), or b) perform a Monte-Carlo study with 
random sampling (Irwin et al., 1987).  In traditional sensitivity studies (item 
a), each input would be varied over a reasonable range likely to be 
encountered.  These studies were routinely performed in the early years of air 
pollution modeling to develop a better understanding of the performance of 
plume dispersion models simulating the transport and diffusion of inert 
pollutants.  Monte-Carlo studies (item b) are becoming more common, as they 
provide a sense of the overall response of the modeling system to known 
uncertainties throughout the system.  They are especially useful for models 
simulating chemically reactive species where there are strong nonlinear 
couplings between the model input and the output (Hanna et al, 1998).  
Results from traditional sensitivity and Monte-Carlo studies provide useful 
guidance on which inputs should be most carefully prescribed because they 
account for the greatest sensitivity in the modeling output.  Sensitivity 
analysis can also provide insight into how a model will behave when it is 
applied to conditions outside of the severely limited supply of available 
evaluation data. 

 
• Uncertainty analysis (Section 4) is a process of estimating the model 

uncertainty.  The total model uncertainty consists of three terms: 1) model 
formulation uncertainty in theoretical and numerical description of 
physics/chemistry parameters and processes (possibly systematic or random, 
assessable using traditional sensitivity or Monte-Carlo studies); 2) 
representativeness and measurement uncertainty in emission and 
meteorological model input data (both systematic and random, assessable 
using traditional sensitivity or Monte-Carlo studies); and 3) inherent 
variability associated with those physical processes which are not 
characterized within the model (both systematic and random, requires an 
extensive observational database and the estimation of ensemble averages).  
While the first and second contributions can in principle be reduced, it has 
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been recognized that inherent variability is not reducible, as it relates to the 
stochastic nature of the turbulent atmospheric motions (Fox, 1984). 

 
• Statistical model evaluation (Section 7) is the comparison of model outputs 

with experimental data.  It is also referred to as a statistical performance 
evaluation (ASTM D6589).  It is preferred that the comparison data have not 
been used to develop the model.  

 
• Model intercomparison is a process where several models, all presumably 

appropriate for some chosen situations (idealized or real), simultaneously have 
their performance assessed.  This is a necessary step if one is to objectively 
select those models (from a list of possible candidate models), which perform 
best for some chosen situations.  It is becoming increasingly more common 
for model intercomparisons to involve bootstrap resampling in order to arrive 
at an objective determination of whether differences seen in performance are 
statistically significant (see discussion in Section 5.4). 

 
 
7 Statistical Model Evaluation 
 
Statistical model evaluation is the analysis of model performance based on the 
statistical comparison of the model outputs with the experimental data (evaluation 
objectives).  Although we can recommend specific steps one should accomplish, 
the details in how these steps are accomplished typically cannot be defined until: 
 

1. the evaluation goal is defined, 
2. the model is defined (or models if one is interested in performing model 

intercomparison), and 
3. the databases are defined. 

 
The sequence shown is a natural consequence that one cannot define which 
models to apply until the goal is defined.  For instance, are we testing the 
performance of models to estimate the maximum concentrations near an industrial 
facility with one or several tall stacks next to buildings?  Are we testing the 
performance of models to estimate the peak daily ozone concentration near a large 
city that is downwind of several even larger cities?  The evaluation databases to 
be employed cannot be defined until one knows which model (or models) is 
selected and the task (objective) to be evaluated.  Models require certain inputs, 
which may limit the usefulness of certain field data.  Certain tasks require 
particular sampling plans (otherwise, one cannot evaluate the model’s 
performance). 
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7.1 Before Evaluation 
 
7.1.1 Defining the Evaluation Goal 
 
To statistically assess model performance, one must define an overall evaluation 
goal or purpose.  This will suggest features (evaluation objectives, see Section 
7.2.1) within the observed and modeled concentration patterns to be compared 
(e.g., maximum surface concentrations, lateral extent of a dispersing plume).  The 
selection and definition of evaluation objectives are typically tailored to the 
model’s capabilities and intended uses.  The very nature of the problem of 
characterizing air quality and the way models are applied make it impossible to 
define one single or absolute evaluation objective suitable for all purposes.  The 
definition of evaluation objectives will be restricted by the limited range of 
conditions in the available comparison data.  A procedure needs to be defined that 
allows definition of an evaluation objective from available observations of 
concentration values. 
 
The evaluation goal can be process oriented (diagnostic); in this case one will 
have to make a selection of the model characteristics/modules to be validated.  
The evaluation goal may concern the overall model (integrated).  It can be 
episodic or climatological depending on the time scale.  The goal should be 
specific enough that it can be converted into one or more objective comparisons, 
which allows construction of null hypotheses that can be tested.  
 
The evaluation goal may be to assess the performance of models to characterize 
what they were intended to characterize, namely ensemble estimates.  
Alternatively, the goal may be to assess the performance of models to characterize 
something different from their design capabilities, like maximum values as seen 
in the observations.  There are consequences in choosing the latter, as good 
correspondence in this case may be indicative of a systematic flaw in a model, 
rather than a well-performing model.  We recommend including, in all model 
evaluations, an assessment of how well models perform their designed 
capabilities. 
 
When the intent is to select, among several models, a model able to perform as 
intended, the goal can be to determine which of several models has the lowest 
combination of bias and scatter, when modeling results are compared with 
observed values of the evaluation objectives.  For this assessment, we recommend 
using the NNR or the NMSE (other performance measures may also provide 
useful insights).  We first define the model having the lowest value for the NNR 
as the base-model.  Then to assess the relative skill of the other models, the null 
hypotheses would be that the NNR values computed for the other models are 
significantly different when compared to that computed for the base-model (see 
Section 5.4). 
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7.1.2 Understanding Models to be Validated 
 
Another part of statistical model evaluation is in having a fundamental 
understanding of what a model is capable of estimating (what physical processes 
are included or excluded from explicit treatment).  All models are a compromise 
in what physical processes are chosen for explicit treatment.  If the objective is to 
estimate the pattern of concentration values in the near vicinity of one (or several) 
source, then typically chemistry is of little importance.  For such situations, the 
travel times from the sources to the receptor locations of interest are too short for 
chemistry formation and destruction to greatly affect the results.  However, such 
situations demand that the air quality model properly treat near-field source 
emission effects such as: building wakes, initial characterization of source release 
conditions and size, rates of diffusion of pollutants released as they transport 
downwind, terrain and land use effects on plume transport, etc.  If chemistry is to 
be explicitly treated, then initial source release effects are typically unimportant, 
as the pollutants are well-mixed over some volume of the atmosphere by the time 
the chemistry of interest has greatly affected the results.  First attempts to treat 
both near-field dispersion effects and chemistry have been found to be inefficient 
and slow on today’s computers that are available for routine use. 
 
One might ask why more than one model is often involved in a statistical model 
evaluation exercise.  There are several pragmatic reasons.  Often, there is already 
an “accepted” model, and the purpose of statistical model evaluation is to prove 
whether a candidate model’s performance is significantly better than the 
“accepted” model.  Models differ in the characterized physical processes, the 
sophistication of input data required, and the numerical processor required.  If 
several models can be shown to have statistically similar performance, then one 
might select from these a model for use that best meets available resources in 
input data, computer expertise, processing time, etc.  Parsimony (economy or 
simplicity of assumptions) is a desired trait in modeling.  As illustrated in Figure 
8, as the model formulation increases in complexity (to explicitly treat more 
physical processes), we increase the number of input variables, which increases 
the likelihood of degrading the model’s performance due to input data and model 
parameter uncertainty.  Underlying the model formulation and input uncertainty, 
there is the inherent variability that the model does not characterize (represented 
as the line labeled “noise”). 
 
Alternatively, one might select from a group of models having similar 
performance, a model that is known to handle a specific process (deposition, 
sulfate chemistry, etc.).  For testing certain specific processes, there may be very 
few databases suitable for use in an evaluation.  This is not a desirable situation, 
but one often faces less evaluation data than is needed.  Thus, part of model 
evaluation is an artful use of sparsely available field data.  A corollary is to have a 
working knowledge of the field data that possibly could be used, and knowing the 
strengths and weaknesses of each field experiment’s data. 
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Figure 8.  Illustration of relationship of model formulation uncertainty and 
input uncertainty, and the combined effect on total model uncertainty.  
[Adapted from Hanna (1989b).  Reprinted with permission from the 
Butterworth-Heinemann  Publishing Company]. 

 
7.1.3 Selecting Field Data for Use in the Model Evaluation  
 
Model evaluation is mostly constrained by the amount and quality of available 
observational data for comparison with modeling results.  The simulation models 
are capable of providing estimates of a larger set of conditions than for which 
there are observations.  Furthermore, most models do not provide estimates of 
directly measurable quantities.  For instance, even if a model provides an estimate 
of the concentration at a specific location, it is most likely an estimate of an 
ensemble average result which has an implied averaging time; for grid models, it 
represents an average over some volume of air (e.g., grid average).  Hence, in 
establishing what abilities of the model are to be tested, one must first consider 
whether there are sufficient data available that can provide (either directly or 
through analysis) observations of what is being modeled. 
 
Some fundamental understanding of the sampler limitations (operational range), 
background concentration values, and stochastic nature of the atmosphere is 
necessary for developing effective evaluation methodologies.  All samplers have a 
detection threshold; below this threshold, observed values either are not provided, 
or are considered suspect.  It is possible that there is a natural background of the 
tracer, which either has been subtracted from the observations, or needs to be 
considered in using the observations.  Some samplers have a saturation point that 
limits the maximum value that can be observed.  The user of concentration 
observations should address these limitations, as needed, in designing the 
evaluation procedures. 
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It is often worthwhile to perform a preliminary data set review in order to learn 
the “structure” of the data, and thereby identify appropriate strengths and 
limitations within a field experiment (U.S. Environmental Protection Agency 
QA/G-9, 1998).  This review could include calculations of basic statistical 
quantities - number of observations and data capture, average, median (P50), 
range, standard deviation, coefficient of variation, P99, and P95 - and graphical 
representation of the data.  The preliminary data set review should include 
considerations about quality of the data as well (for more details see Section 8.2). 
 
We recommend viewing a model’s performance, in relative terms, in comparison 
to several available models over a variety of circumstances.  As new field data 
becomes available, the selection of the best performing model may change, as the 
models may be validated for new conditions and in new circumstances.  This 
argues for using a variety of field data sets to provide hope for developing robust 
conclusions as to which of several models can be currently deemed to perform 
best. 
 
The following series of steps should be considered in choosing data sets for model 
evaluation studies: 

• select field data sets appropriate for the applications for which the model 
is to be evaluated, taking the quality of the data into account  

• note the model input values that require estimation for the selected data 
sets 

• determine the required levels of temporal detail (e.g., minute-by-minute or 
hour-by-hour) and spatial detail (e.g., vertical or horizontal variation in the 
meteorological conditions) for the models to be evaluated, as well as the 
existence and variations of other sources of the same material within the 
modeling domain 

• ensure that the samplers are sufficiently close to one another and in 
sufficient numbers for definition of the evaluation objectives  

• find or collect appropriate data to estimate the model inputs and to 
compare with model outputs 

 
7.2 Evaluation Strategy 
 
7.2.1 Defining Evaluation Procedures 
 
Performing a statistical model evaluation involves defining those evaluation 
objectives (features or characteristics) within the pattern of observed and modeled 
concentration values that are of interest to compare.  As yet, no single feature or 
characteristic has been found, that can be defined within a concentration pattern, 
that can fully test a model’s performance.  For instance, the maximum surface 
concentration may appear unbiased through a compensation of errors in 
estimating the lateral extent of the dispersing material and in estimating the 
vertical extent of the dispersing material.  Considering that other biases may exist 
(e.g., in treatment of the chemical and removal processes during transport, in 
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estimating buoyant plume rise, in accounting for wind direction changes with 
height, in accounting for penetration of material into layers above the current 
mixing depth, and in systematic variation in all of these biases as a function of 
atmospheric stability), one can appreciate that there are many ways that a model 
can falsely give the appearance of good performance. 
 
In principle, modeling diffusion involves characterizing the size and shape of the 
volume into which the material is dispersing as well as the distribution of the 
material within this volume.  Volumes are three dimensional, so a model 
evaluation will be more complete if it tests the model’s ability to characterize 
diffusion along more than one of these dimensions.  In practice, there are more 
observations available on the downwind and crosswind concentration profiles of 
the dispersing material than are available on vertical concentration profiles of the 
dispersing material.  
 
Developing evaluation objectives involves having a sense of what analytical 
procedures might be employed.  This involves a combination of understanding the 
modeling assumptions, knowledge of possible comparison measures, and 
knowledge of the success of previous practices.  For example, to assess the 
performance of the skill of a model to simulate the areal extent of a dispersing 
puff of tracer emissions from a comparison of isolated measurements with the 
estimated concentration pattern, Brost (1988) used evaluation objectives and 
procedures developed for measuring the skill of mesoscale meteorological models 
to forecast the areal extent of a tropical cyclone from a comparison of isolated 
pressure measurements to the estimated pressure pattern (Anthes, 1983).  In 
particular, the surface area where concentrations were predicted to be above a 
certain threshold was compared to the surface area deduced from the available 
monitoring data.  The lesson here is that evaluation objectives and procedures 
developed in other earth sciences can often be adapted for use in evaluating air 
dispersion models. 
 
7.2.2 Developing Evaluation Procedures 
 
Having selected evaluation objectives for comparison, the next step would be to 
define an evaluation procedure (or series of procedures), which defines how each 
evaluation objective will be derived from the available information.  Development 
of statistical model evaluation procedures begins by providing technical 
definitions of the terminology used in the goal statement.  In the following 
discussion, we use a plume dispersion model example, but, as discussed in 
Section 7.4, the thought process is also valid for grid models. 
 
For instance, suppose that the evaluation goal is to test the ability of models to 
replicate the average centerline concentration as a function of transport downwind 
and as a function of atmospheric stability.  The stated goal involves several items 
which require definition, namely: 1) what is an “average centerline 
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concentration”, 2) what is “transport downwind”, and 3) how will “stability” be 
defined?   
 
What questions arise in defining the average centerline concentration?  Given a 
sampling arc of concentration values, a decision is needed of whether the 
centerline concentration is the maximum value seen anywhere along the arc, or 
whether the centerline concentration is that seen near the center of mass of the 
observed lateral concentration distribution.  If one chooses the latter concept, then 
a definition is needed of how “near” the center of mass one has to be, in order to 
be representative of a centerline concentration value.  One might decide to select 
all values within a specific range (nearness to the center of mass).  In such a case, 
either a definition or a procedure will be needed to define how this specific range 
will be determined.  A decision will have to be made on the treatment of observed 
zero (and near measurement threshold) concentrations.  Discarding such values is 
saying that low concentrations cannot occur near a plume’s center of mass, which 
is a dubious assumption.  One might test to see if conclusions reached regarding 
“best performing model” are sensitive to the decision made on the treatment of 
near-zero concentrations. 
 
What questions arise in defining “transport downwind”?  During near-calm wind 
conditions when transport may have favored more than one direction over the 
sampling period, “downwind” is not well described by one direction.  If plume 
models are being tested, one might exclude near-calm conditions since plume 
models are not meant to provide meaningful results during such conditions.  If 
puff models or grid models are being tested, one might sort the near-calm cases 
into a special regime for analysis.   
 
What questions arise in defining the “stability”?  For surface releases, surface-
layer Monin-Obukhov length, L, has been found to adequately define stability 
effects, whereas, for elevated releases, Zi/L, where Zi is the mixing depth, has 
been found to be a useful parameter for describing stability effects.  Each model 
likely has its own meteorological processor.  It is likely that different processors 
will have different values for L and Zi for each of the evaluation cases.  There is 
no one best way to deal with this problem.  One solution might be sorting the data 
into regimes using each of the model’s input values, and seeing whether or not the 
previous conclusions as to the best performing model are affected.   
 
What questions arise if one is grouping data together?  If one is grouping data 
together for which the emission rates are different, one might choose to resolve 
this by normalizing the concentration values by dividing by the respective 
emission rates.  Dividing by the emission rate requires either a constant emission 
rate over the entire release, or the downwind transport must be sufficiently 
obvious that one can compute an emission rate based on travel time that is 
appropriate for each downwind distance.   
 
We discussed earlier the difficulty in properly characterizing the plume transport 
direction.  A decision will have to be made as to how one will compare a feature 
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(or characteristic) in a concentration pattern, when uncertainties in transport 
direction are large.  Will the observed and modeled patterns be shifted, and if so, 
in what manner?   
 
Even defining the “observed” pattern is problematic, because one must decide 
where the “edge” of the pattern occurs.  Will the reported concentration be used, 
even though it is near (or below) the measurement threshold?  If one includes for 
analysis only concentration greater than zero, the testing may favor models that 
overestimate the extension in space and/or in time of the pollution episode.  On 
the contrary, if the statistic includes all data (including zeros), the performance of 
a model, that in general underestimates the extension in space and/or in time of 
the pollution episode, is improved.  Furthermore, one can imagine that adding a 
number of receptor points far from the area of interest of the pollutant, obviously 
measuring zero concentration, would artificially improve the performance of any 
model.  An approach might consist of including all the points where either 
measured or simulated values give non-zero concentration.  However, this 
criterion generates different ensembles of selected data that are dependent on each 
model’s results.  To try to overcome the outlined difficulties, a filter like that used 
by Mosca et al. (1998) dealing with the ETEX (European Tracer EXperiment) can 
be applied.  They selected pairs ( , ) showing a non-zero measured 
concentration that occur not earlier than two time intervals (6 h) before the model 
predicts the arrival of the cloud, and not later than two time intervals after the 
model predicts the departure of the cloud. 

oC sC

 
This discussion is not meant to be exhaustive, but to illustrate how the thought 
process might evolve.  By defining terms, other questions arise and, when 
resolved, will eventually develop an analysis that will compute the evaluation 
objective from the available data.  There likely is more than one answer to the 
questions that develop.  This may cause different people to develop different 
objectives and procedures for the same goal.  If the same set of models is chosen 
as the best performing, regardless of which path is chosen, one can likely be 
assured that the conclusions reached are robust. 
 
7.3 Summarizing Evaluation Results 
 
Summarizing model evaluation results usually involves both performance and 
diagnostic evaluations, and both are needed to establish credibility within the 
client and scientific community.  Performance evaluations allow determination of 
relative model precision and accuracy in comparison with data and alternative 
modeling systems.  Performance evaluations allow us to answer the question, how 
well does the model simulate the temporal and spatial patterns seen in the 
observations, and typically employ large spatial/temporal scale data sets (e.g., 
large field experiments, national data sets).  A performance evaluation might 
involve a summary of one or more evaluation objectives over all conditions 
experienced within a particular field experiment.  Performance evaluations can be 
done with or without stratification of the evaluation data into regimes; however, 
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we have recommended the use of modeled and observed regime averages, as this 
improves the likelihood of detecting bias in the models’ ability to perform as 
intended.  Diagnostic evaluations allow determination of the model precision and 
accuracy in simulating intermediate processes that affect the final results.  
Diagnostic evaluations allow us to answer the question, do we get the right 
answer for the right reason, and usually employ smaller spatial/temporal scale 
date sets (e.g., field studies).  A diagnostic evaluation might involve comparison 
of observed and modeled values (evaluation objectives) as a function of one or 
more model input variables, with a focus on a particular process (e.g., plume rise, 
production of chemical species).  
 
7.3.1 Detecting Trends in Modeling Bias 
 
In this discussion, references to observed and modeled values refer to the 
observed and model evaluation objectives (e.g., regime averages).  A plot of the 
observed and modeled values as a function of one of the model input parameters 
is a direct means for detecting model bias.  Such comparisons have been 
recommended and employed in a variety of investigations (e.g., Fox 1981; Weil et 
al., 1992; and Hanna, 1993).  In some cases, the comparison is the ratio formed by 
dividing the modeled value by the observed value, plotted as a function of one or 
more of the model input parameters.  If the data have been stratified into regimes, 
one can also display the standard error estimates on the respective modeled and 
observed regime averages.  If the respective averages are encompassed by the 
error bars (typically plus and minus two times the standard error estimates), one 
can assume that the differences are not significant (Irwin, 1998).  As described by 
Hanna (1988), this is “seductive” inference.  A more robust assessment of the 
significance of the differences would be to use the analysis discussed in Section 
5.4. 
 
7.3.2 Overall Summary of Performance 
 
As an example of overall summary of performance, we will discuss a procedure 
constructed using the scheme introduced by Cox and Tikvart (1990) as a template.  
The design for statistically summarizing model performance over several regimes 
is envisioned as a five-step procedure. 

1. Form a replicate sample using concurrent sampling of the observed and 
modeled values for each regime.  Concurrent sampling associates results 
from all models with each observed value so that selection of an observed 
value automatically selects the corresponding estimates by all models. 

2. Compute the average of observed and modeled values for each regime. 
3. Compute the NNR using the computed regime averages, and store the 

value of the NNR computed for this pass of the bootstrap sampling. 
4. Repeat steps 1 through 3 for all B bootstrap sampling passes.  
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5. Implement the procedure described in Section 5.4 to detect: a) which 
model has the lowest computed NNR value (call this the “base” model); b) 
which models have NNR values that are significantly different from the 
“base” model.  

 
In the Cox and Tikvart (1990) analysis, the data were sorted into regimes (defined 
in terms of Pasquill stability category and low/high wind speed classes), and 
bootstrap resampling was used to develop standard error estimates on the 
comparisons.  The performance measure was the RHC (computed from the raw 
observed cumulative frequency distribution), which is a comparison of the highest 
concentration values (maxima), which most models do not contain the physics to 
simulate.  This procedure can be improved if the performance measure is the 
NNR computed from the modeled and observed regime averages of centerline 
concentration values.  
 
The data demands are much greater for using regime averages than for using 
individual concentrations.  Procedures that analyze groups (regimes) of data 
require intensive tracer field studies, with a dense receptor network, and many 
experiments.  Whereas, Cox and Tikvart (1990) devised their analysis to make use 
of very sparse receptor networks having one or more years of sampling results.  
With dense receptor networks, attempts can be made to compare average modeled 
and “observed” centerline concentration values, but there are only a few of these 
experiments that have sufficient data to allow stratification of the data into 
regimes for analysis.  With sparse receptor networks, there are more data for 
analysis, but there is insufficient information to define the observed maxima 
relative to the dispersing plume’s center of mass.  Thus, there is uncertainty as to 
whether or not the observed maxima are representative of centerline concentration 
values.  As discussed earlier, observed concentrations for inert gas can easily vary 
by a factor of two in magnitude about their respective ensemble averages.  It is 
not obvious that the average of the N (say 25) observed maximum hourly 
concentration values (for a particular distance downwind and narrowly defined 
stability range) is the ensemble average centerline concentration the model is 
predicting.  In fact, one might anticipate that the average of the N maximum 
concentration values is likely to be higher than the ensemble average of the 
centerline concentration.  Following the testing procedure outlined by Cox and 
Tikvart (1990) may favor selection of poorly formed models that routinely 
underestimate the lateral diffusion (and thereby overestimate the plume centerline 
concentration).  This in turn may bias the performance of such models in their 
ability to characterize concentration patterns for longer averaging times.  We see 
evaluations, using field data from sparse networks, as a useful extension to further 
explore the performance of a well-formulated model for other environs and for 
use of the model for other purposes.  
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7.4 Evaluation of Eulerian Grid Models 
 
For the most part, the preceding discussion and the examples provided were 
explicitly discussed from the viewpoint that the models being validated were for 
inert species (e.g., sulfur dioxide, primary emissions of particulate, carbon 
monoxide, etc.).  In addition, the examples were discussed in terms of plume and 
puff modeling concepts.  Evaluation of grid models is not governed by different 
principles.  All of the philosophy and principles discussed in the previous sections 
apply equally to grid models.   
 
The problems and uncertainties of characterizing the inert pollutant patterns and 
transport are just as severe for a grid model as for plume or puff models.  In recent 
years, more attention has been given to assessing the performance of Eulerian grid 
models in characterizing concentrations of primary pollutants.  Studies such as 
Kumar et al. (1994) suggest that large differences are seen when comparisons are 
made involving primary pollutants.  Differences seen in comparisons involving 
primary pollutants are typically an order of magnitude larger than those seen for 
reactive (secondary formed) pollutants.  The surface concentration values of 
primary pollutants are typically one of localized maxima or minima, surrounded 
by strong gradients.  The observed pattern is one stochastic realization from some 
imperfectly defined ensemble.  The simulation results are strongly dependent on 
proper characterization of the emissions, and on the sophistication brought to bear 
on the analysis and characterization of the time and space varying three-
dimensional wind field.  To further complicate the problem for grid models, the 
spatial and temporal characterization of the precursor emissions are highly 
uncertain (e.g., Hanna et al., 1998), as they are most often deduced from 
assumptions of land use, activity patterns, traffic flows, etc., rather than on direct 
measurements of emissions.  
 
Unlike primary pollutants, the spatial pattern for surface concentration values of 
secondary pollutants (like ozone) is typically a broad flat maximum with weak 
spatial gradients.  Localized areas with strong gradients in ozone concentration 
are found in the near vicinity of sources emitting large amounts of nitrogen 
oxides, which can locally deplete the ozone.  Given a reasonably good precursor 
inventory, one would expect the ozone pattern to be well simulated.  Sources with 
large emissions of nitrogen oxide should be easy to identify.  As discussed in 
Hogrefe et al. (2001b), the production of ozone within and downwind of a large 
urban area correlates with the diurnal course of available sunlight and the 
precursor emissions are often correlated with the diurnal course of the surface 
temperatures, so the model estimates are forced somewhat to show good 
correlation in time. 
 
Photochemical grid models should be validated using extensive and detailed field 
data (e.g., see Section 7.1.3) to determine if the models adequately represent the 
ozone processes.  However, there are few (if any) field studies that have collected 
ozone data over an extensive length of time with a reasonably dense network of 
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receptors.  Without such data, the formal statistical approaches where null 
hypotheses are constructed and tested are of little value.   
 
Photochemical model intercomparison is of interest.  In order to perform such 
intercomparisons, it is necessary to design the base runs for the various models so 
that they are as comparable as possible (i.e. using the same grid domain, the same 
emissions files, the same meteorological inputs, and the same initial and boundary 
conditions) while still preserving the advanced features available in the technical 
components of each of the models.  In any case, if the database is not extensive 
and detailed, it is difficult to discern significant differences between models (e.g., 
Hanna et al., 1996). 
 
It is also of interest to determine how well models simulate important variables, 
such as NO2, VOC and other precursors, at the surface and aloft.  Uncertainties 
involving the initial conditions and boundary conditions should be assessed, and it 
should be determined whether models perform better with initial and boundary 
conditions provided by larger scale models, or with values derived from intensive 
observations.  It is of interest to know whether the models respond differently to 
changes in VOC and NOx emissions, or whether the predictions are improved by 
using prognostic rather than diagnostic meteorological model input. 
 
7.4.1 The “Threshold” Methods 
 
Traditionally, Tesche et al. (1990) and the U.S. Environmental Protection Agency 
(1991) have recommended statistical analysis of the residuals to evaluate 
photochemical models.  The final acceptance criteria are arbitrary, requiring the 
calculated model biases and variances to be within certain bounds or “thresholds”.  
For completeness, we shall review these methods in this section.  However, as 
described by Arnold et al. (1998), recent analyses have shown that “acceptable” 
performance has been determined using these bias and threshold criteria in spite 
of the existence of fundamental errors in the model inputs of emissions and 
meteorology. Currently, an effort is underway to develop a new generation of 
model evaluation methods for assessing the performance of chemical grid models, 
and we have summarized some of the methods being examined in Section 7.4.2. 
 
Hanna et al. (1996) photochemical model evaluation exercise was founded on two 
steps, suggested by Tesche et al. (1990) and U.S. Environmental Protection 
Agency (1991):   

• the first step involved visual inspections of the various contour plots, 
vertical profiles, and time series, to look for obvious signs of correlation, 
trends, biases, and scatter  

• the second step made use of the average normalized bias 
 

( ) oos CCCbiasnormalizedaverage −=  (21) 
 

and average normalized absolute bias 
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oos CCCbiasabsolutenormalizedaverage −=   (22) 

 
It is worth noting that it is not possible to deal with zero observed concentrations 
using these indices.  U.S. Environmental Protection Agency (1991) recommends 
the average normalized bias be less than about 10-15%, and the average 
normalized absolute bias be less than about 30-35%, for data sets in which the 
daily maximum ozone predictions and observations are paired in time and space.  
 
Hanna et al. (1996) performed a statistical analysis concerning: 1) peak 1 h 
averaged ozone concentration for a given day anywhere in the domain; 2) 1 h 
averaged ozone concentrations larger than 60 ppb at all monitors and hours (i.e. 
paired in space and time).   
 
Following U.S. Environmental Protection Agency (1991), U.S. Environmental 
Protection Agency (1996) presents a compilation of a series of photochemical 
model simulations and evaluation exercises conducted within the United States.  
These evaluations focused on the models’ ability to predict the domain-wide peak 
ozone concentration, and the concentrations at all locations with observed ozone 
concentrations above 60 ppb.  The performance measures used are: 

• the normalized accuracy of domain-wide maximum 1-hour concentration 
unpaired in space and time  
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Again following U.S. Environmental Protection Agency (1991), Lurmann and 
Kumar (1997) and SAIC (1997) presented an evaluation of the ability of the 
UAM-V model (Morris et al., 1993) to estimate 1-hour and 8-hour average ozone 
concentrations, respectively. 
 
7.4.2 Advanced Methodologies 
 
Data representativeness problem  
Davis et al. (2000) deal with the problem of the data representativeness using 
spatial statistical techniques to compare observed ozone fields with the surface 
level ozone forecast fields from grid models.  The 8-hour average daily observed 
ozone at the monitoring sites was interpolated to the model grid cells using a 
spatial statistical method, and then differences between the model output fields 
and the spatially interpolated observed fields were compared. 
 
Scale analysis methodologies 
Hogrefe et al. (2001a, 2001b) and Biswas et al. (2001) suggest that there are 
several shortcomings in using traditional performance measures, such as: if data 
assimilation is applied, the required statistical independence of the observed and 
simulated data sets is violated; traditional statistics provide little insight into the 
physical behavior of the model (i.e. they do not give any insight into the model’s 
ability to reproduce the spatial and temporal correlation structures embedded in 
the observations on various scales). Therefore, to analyze meteorological input 
parameters, ozone predictions, predictions of ozone precursors, and predictions of 
ozone-precursors relationship, they introduced additional model evaluation 
methods based on the concept of scale analysis.  To this end, a spectral 
decomposition technique is applied.  It then becomes evident that model 
performance is time-scale specific and, therefore, the outcome of model 
evaluation on different time scales can be tied to the model formulation of the 
relevant processes on these time scales. 
 
Time series of ozone observations contain fluctuations occurring on many 
different time scales (e.g., Vukovich, 1997; Sebald et al., 2000).  Since ozone 
observations are taken at discrete intervals, the highest and lowest frequencies that 
can be estimated for any particular time series are determined by the sampling 
interval and the length of data record, respectively.  The choice of the different 
frequency bands used by Hogrefe et al. (2001a, 2001b) and Biswas et al. (2001) 
was performed both on the recorded power spectrum and on a priori knowledge 
about different physical processes of interest to the simulation of air quality.  
They choose: the intra-day (ID) range (periods less than 12 hours), the diurnal 
(DU) range (periods of 24 hours), the synoptic (SY) range (periods of 2-21 days), 
and long-term baseline (BL) fluctuations (containing periods greater than 21 
days). 
 



 Air Quality Modeling – Vol. II 542

The intra-day fluctuations are determined by the effects of turbulent horizontal 
and vertical mixing, and ozone response to fast-changing emissions patterns 
during traffic rush hours.  Diurnal fluctuations are associated with the diurnal 
variation of the solar flux, and the resulting differences between the daytime 
photochemical production and the nighttime removal of ozone as well as the 
diurnal cycle of boundary layer evolution and decay.  The variations of ozone on 
the synoptic scale are caused by changing meteorological conditions such as the 
presence of a nearly stagnant high pressure system or the passage of frontal 
systems.  Fluctuations in baseline are caused by seasonal variations of the solar 
flux, changing large-scale flow patterns, and change in vegetation coverage and 
biogenic emissions. 
 
Hogrefe et al. (2001a, 2001b) and Biswas et al. (2001) used the Kolmogorov-
Zurbenko (KZ) filter (Zurbenko, 1986) because of its powerful separation 
characteristics, simplicity, and ability to handle missing data.  This technique is 
described in more detail in Eskridge et al. (1997), Rao et al. (1997) and Hogrefe et 
al. (2000).  In the following, we give only an outline.  
 
The temporal components mentioned previously are estimated as follows: 
 

( ) ( )[ ] ( )[ ]{ }tOKZtOtID 33,33 lnln −=  (26) 
 

( ) ( )[ ]{ } ( )[ ]{ }tOKZtOKZtDU 35,1333,3 lnln −=  (27) 
 

( ) ( )[ ]{ } ( )[ ]{ }tOKZtOKZtSY 35,10335,13 lnln −=  (28) 
 

( ) ( )[ ]{ }tOKZtBL 35,103 ln=  (29) 
 

where KZm,k is the KZ filter with a window size of m hours and k iterations.  
Thus, by adding all components as defined in Equations (26), (27), (28), and (29), 
the ozone process is represented as 
 

( )[ ] ( ) ( ) ( ) ( )tBLtSYtDUtIDtO +++=3ln   (30) 
 
where the intra-day, diurnal and synoptic components are zero-mean processes.  
The actual ozone concentration in the ppb scale can be obtained as 
 

( ) ( ) ( ) ( ) ( )tBLtSYtDUtID eeeetO ×××≈3   (31) 
 
As far as the model’s ability to simulate ozone fields is concerned, Hogrefe et al. 
(2001b) first compared the relative importance of the individual components to 
the overall ozone process for both observations and model predictions.  For this 
purpose, the variance of each component is computed and compared to the overall 
variance for both observations and model predictions.  Then, to compare the 
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absolute amount of energy on different time scales between observation and 
model predictions, Hogrefe et al. (2001b) listed the ratios of the variances of the 
modeled to the observed time series for different time scales.  They concluded 
that the models characterize best those variations having time scales longer than 
several days.  They suggested that to increase confidence in the regulatory 
modeling process, the modeling period should be several synoptic cycles in 
duration rather than the 2-3 days of a single ozone pollution episode. 
 
Process oriented methodologies 
As we have already said, the evaluation goal may concern the overall model 
(integrated), or can be process oriented (diagnostic). In this case, one will have to 
make a selection of the model characteristics/modules to be validated.  Several 
authors (e.g., Hass et al., 1997; Dennis et al., 1999; Tonnesen and Dennis, 2000a 
and 2000b; Luecken et al., 1999) have been asking that model evaluation of 
complex grid models be process oriented.  In other words, they want to know if 
the model is describing how things happen correctly without too much emphasis 
on whether the magnitude of the changes predicted are correct.  Therefore, they 
do not believe that a photochemical model has been fully evaluated if 
comparisons are only observed versus predicted ozone.  They are worried that a 
model can give the correct result for the wrong reason.  So, they want the 
evaluation to “look inside” the model, and to analyze modules to see if the model 
has modeled the right causes for the effects seen.  
 
7.4.3 Final Remarks 
 
It is concluded that validating the performance of Eulerian grid models is not 
philosophically different than validating the performance of plume or puff 
models.  The pattern for inert species is just as difficult to characterize for any of 
the various model types.  To validate performance for characterizing the inert 
species pattern, the same thought process would be followed, regardless of the 
model being validated.  For reactive species, the pattern appears to have fewer 
anomalies, but characterization of the chemistry, initial and boundary conditions, 
and characterization of the precursor emission rates are very uncertain.  The 
logistics of running several Eulerian grid models for the same field studies are 
found to have their own sets of problems and constraints.  Furthermore, field 
studies of reactive species rarely provide a time series long enough for developing 
confidence bounds to formally test whether differences seen in comparing 
different models is significant. 
 
 
8 Model Quality Assurance 
 
Confidence in using air quality models in scientific studies, as well as in 
operational decision-making applications is founded on a program of quality 
assurance.  The definition of quality assurance can be inferred from different 
sources.  From ISO 14000 (International Standards on Environmental 
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Management), the definition of quality assurance is all those planned and 
systematic actions necessary to provide adequate confidence that a product or 
service will satisfy given requirements for quality.  From U.S. Environmental 
Protection Agency QA/G-5 (1998) and EUROTRAC 
(http://www.gsf.de/eurotrac/organisation/g-qa-qc.htm), quality assurance is defined as an 
integrated system of management activities involving planning, implementation, 
assessment, reporting, and quality improvement to ensure that a process, item or 
service is of the type and quality needed and expected by the user. 
 
8.1 Overview of Model Quality Assurance 
 
Model quality assurance can be envisioned as documentation of the following 
items (e.g., Borrego and Tchepel, 1998; Borrego et al., 2001b): definition of 
purpose and scope of the modeling, model description, database description, 
selection of performance measures, model evaluation, scientific peer review, and 
user oriented assessment.  Therefore, model evaluation (see Section 6), which in 
turn includes statistical model evaluation (see Section 7), is a basic component of 
model quality assurance. 
 
• Definition of purpose and scope of the modeling. 

• Identification of the type of model under evaluation: long range transport 
models, photochemical models at continental scale, photochemical models 
at urban scale (without obstacles), street canyon models (urban scale with 
obstacles), stack models, concentration fluctuation models, dense gas 
models, indoor pollution, and other models9.   

• Identification of the purpose of the modeling: air quality assessment 
(determine impact on human health, ecosystems), regulatory purpose (e.g., 
calculation of a minimum stack height for new installation), policy support 
(e.g., scenario studies on effect of emission abatement measures), 
emergency planning (estimation of hazardous gas concentration), public 
information (e.g., online information on the possible occurrence of smog 
episodes), and scientific research (better understanding of 
physical/chemical processes involving air pollution).  

 
• Model description.  Availability of extended description of the model is 

important for quality assurance procedures.  The model description should 
include a detailed description of the physics and chemistry contained in the 
model.  The description should include a summary of the model 
characteristics (e.g., model approximations, time and space resolution, 
modeling scale).  Furthermore, it should contain details of the model such  as: 
model name, version number, date of first release, area of application, 

                                                           
9 For example, mesoscale flow models (that are the necessary support for dispersion in complex 

terrain), chemical modules, chemical heterogeneous reactions, cloud formation models, models 
for aerosol transformation and growth, model for turbulence, etc.  Some of these models are for 
the purposes mentioned, others are only used to understand physical phenomena and eventually 
are inserted as sub-models in some of the mentioned models.  

http://www.gsf.de/eurotrac/organisation/g-qa-qc.htm


17   Evaluation of Air Pollution Models  545

originating organization, source of model (from the originators, through third 
parties, or in particular whether it is an improved version of an earlier model), 
model type, hardware requirements, software requirements, and references.  

 
• Database description.  Database description first identifies the data used to 

construct the model parameters at the development stage.  Then it identifies 
the data used during the process of both “model algorithm verification” and 
“model evaluation”.  It contains details as data ownership/accessibility and 
origin of the data (from analytic results, simulated by higher-order models, 
laboratory experiments, field experiments, incident reports).  Database 
selection includes consideration of factors such as: data quality assurance, 
completeness, appropriateness, model features/parameters covered, data 
uncertainties (which concern both data used as model inputs, e.g., emission 
and meteorological data, and data used to make a comparison against model 
outputs, e.g., pollutant concentrations), and data representativeness. 

 
• Selection of performance measures.  This would include selection of 

evaluation tools (quantitative or/and qualitative) as statistical indices and 
graphical methodologies to compare model outputs with observed values.  
Performance measures reflect the ability of a model to simulate real world 
phenomena; it helps in understanding a model’s limitations and provides 
support for model inter-comparisons.  

 
• Model evaluation.  Model evaluation is the overall system of procedures 

designed to measure the model performance, and includes: model algorithm 
verification, sensitivity analysis, uncertainty analysis, statistical model 
evaluation, and model inter-comparisons (see Section 6). 

 
• Scientific peer review.  Scientific peer review includes: an assessment of the 

appropriateness of the scientific content; the limits of applicability of the 
model; limitations and advantages of the model; and possible improvements.  
A further objective of a scientific peer review is to guarantee that all steps of 
model evaluation were implemented in agreement with a model’s 
requirements.  For example, good models will likely exhibit poor correlation 
with observations if applied in a manner inconsistent with their physics 
assumptions.  For instance, the modeled concentration values from a 
mesoscale photochemical model will compare poorly with observations from 
an urban station directly affected by traffic emissions.  Scientific peer review 
may involve expert external analysis. 

 
• User oriented assessment.  User oriented assessment provides information 

on: availability of the model, associated documentation, installation 
procedures, user interface, ease of use, guidance in selecting model options 
and input data, limitations on the applicability of the model, explanations 
concerning the output, clarity of warnings and error messages, computational 
costs, and possible improvements. 
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8.2 Related Topics  
 
The following items describe some topics related to model quality assurance. 
 
• Quality assurance of emission inventories.  Harmonization of the 

methodology for the compilation of emission inventories is needed.  
Furthermore, an effort should be focused on developing objective estimates of 
the uncertainties in emission inventories. 

 
• Data quality assessment and data quality objectives.  Data quality 

assessment (DQA) is the scientific and statistical evaluation of data to 
determine if the data obtained from environmental data operations are of the 
right type, quality and quantity to support their intended use (U.S. 
Environmental Protection Agency QA/G-9, 1998).  A data quality objective 
(DQO) is a range of acceptability of measured data for a specific application.  
The definition of DQO depends on the project scientific objectives and on 
intended use of the data.  Different monitoring programs have distinct DQOs.  
To estimate the quality of measurements, the data quality indicators (DQI) are 
used.  DQI are (Borrego et al., 2001a): bias (systematic error); precision 
(random error); accuracy (combination of systematic and random errors); and 
completeness (percent of valid measurements).  The uncertainties of 
measurements have to be reported and considered in data application.   

 
• Model calibration.  Model calibration is a procedure used to make, at the 

model development stage, estimates of parameters within the model 
equations, which best fit the general model structure to a specific observed 
data set.  Note that successful model calibration only indicates that the 
structure of the model includes the important variables that influence behavior 
(or correlated well with variables that influence behavior) under the conditions 
prevailing for the calibration data set.  Model calibration does not ensure that 
the model will predict well under conditions that are quite different than were 
used in the calibration.  For this reason, as new data become available, models 
almost invariably need additional calibration.  When updating calibrated 
values within a model, one should consider previously used data, as well as 
the newly acquired data.  Finally, use of any model beyond its proven range of 
application will involve expert judgment, knowledge of the physical processes 
being modeled, and an awareness of the sensitivity of the model’s output to 
changes in input. 

 
• Data assimilation.  Data assimilation is a numerical technique, which makes 

it possible to combine model results and observations in one integrated 
system.  Observations are input to the numerical system, which consists of the 
model combined with the data assimilation technique.  To several parameters 
(either internal model parameters or input data), noise factors are added.  The 
system will attempt to minimize the discrepancy between calculated 
concentrations and observations.  An essential consideration in this process is 
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to balance the “accepted range of disparity” (noise factors) with the data 
representativeness of the observations in time and space. 

 
 
9 Guidelines for Model Evaluation: Towards Harmonization 

in Model Evaluation Methodology 
 
Although presently the evaluation methodology is generally left to the user to 
define, it is important to realize that efforts are underway to standardize 
evaluation methodologies.  This would allow comparison of model evaluation 
results performed by different users.  It would also provide a standard manner for 
gaining acceptance of models for various operational uses.  As experience 
increases, it is hoped that consensus will be reached in certain evaluation goals, 
evaluation objectives and associated evaluation methodologies, and data sets to be 
employed.  The ultimate goal will be to define a standard evaluation methodology 
for each evaluation goal. 
 
9.1 The USA Effort 
 
Within the United States, the emphasis has been on the development, evaluation 
and application of air quality simulation models that allow development of air 
quality management plans to achieve defined national air quality goals.  These 
plans involve development of emission control strategies sometimes for 
individual sources (“primary” impacts associated with pollutants emitted directly 
into the atmosphere) and sometimes for classes of sources (“secondary” impacts 
associated with pollutants formed during transport).  Part of the decision on which 
model to select is dictated by ensuring that the appropriate physical processes are 
addressed by the model.  However, another part of the decision in model selection 
is the recognition that every model is a compromise in that not all processes are 
included or else the computational demands would become excessive.  Hence, 
model selection often involves expert judgment based on actual experience in the 
use and application of the various models available.  
 
The American Society for Testing and Materials (ASTM) has published a 
“Standard guide for statistical evaluation of atmospheric dispersion models” 
(ASTM D6589).  This guide provides a general philosophy that can be used to 
design statistical model evaluation procedures, either for the comparison of 
modeled concentrations with observations, or to assess one model’s performance 
relative to other candidate models. 
 
Founded in 1995, NARSTO 10  (http://www.cgenv.com/Narsto/) is a public/private 
partnership, whose membership spans the government, utilities, industry, and 
academy throughout Mexico, the United States, and Canada.  Its primary mission 
is to coordinate and enhance policy-relevant scientific research, and assess 

                                                           
10 Formerly an acronym for “North American Research Strategy for Tropospheric Ozone”. 

http://www.cgenv.com/Narsto/
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tropospheric pollution behavior; its activities provide input for science-based 
decision-making and determination of workable, efficient, and effective strategies 
for local and regional air-pollution management.  NARSTO has an ongoing 
activity to evaluate regional air-pollution models by comparing output from 
multiple models as well as by testing against data obtained from NARSTO field 
intensives. 
 
9.2 The European Effort 
 
During the last few years in Europe, many insights have been given about the 
need to improve model evaluation quality.  Excellent examples are the ETEX 
campaigns on the real-time assessment of the long-range atmospheric dispersion 
of harmful releases (Mosca et al., 1998, http://rem.jrc.cec.eu.int/etex/) and the 
RTMOD exercises (Bellasio et al., 1998, http://rtmod.jrc.it/rtmod/).  The need to 
understand the differences between operational uses of air quality models and the 
desire to reduce the disparity between different models when applied to the same 
problem was highlighted in recent International Conferences.  These conferences 
(there have been seven so far) were organized with the aim of “Harmonization 
within Atmospheric Dispersion Modeling for Regulatory Purposes” 
(http://www.harmo.org/), and attracted an increasingly large scientific participation 
(Olesen, 1996, 2001).  A central activity of the "Harmonization" initiative is the 
distribution of a Model Validation Kit11.  The Model Validation Kit is a collection 
of three experimental data sets accompanied by software for model evaluation.  It 
is a practical tool meant to serve as a common frame of reference for modelers.  
The experience gained from these conferences together with that in the field of 
long-range dispersion for accidental releases points in the direction of inter-
comparing mesoscale flow models.  This is the content of MESOCOM 
(http://java.ei.jrc.it/Projects/MESOCOM), which is currently ongoing.  The 
EUROTRAC-2 subprojects GLOREAM 12  and SATURN 
(http://aix.meng.auth.gr/saturn/) are aimed at the formulation of suitable evaluation 
methodologies for regional and urban scale air pollution models, respectively.  
The German organization BWPLUS (http://bwplus.fzk.de/) is presently promoting an 
inter-comparison of methods for the prediction of the air pollutant concentrations 
in a specific street canyon using usually available input data.  
 
Furthermore, it is useful to recall the Data Sets for Atmospheric Modeling (DAM) 
initiative of the JRC (http://java.ei.jrc.it/Projects/DAM).  DAM’s objective is to 
facilitate the accessibility of datasets, presently available to the Scientific 
Community for atmospheric model evaluation, to any model developer or user 
that intends to validate his/her modeling tool.  DAM is intended as an interface 
between modelers and the information available through existing web sites or 
other contact points.  
 

                                                           
11 http://www.dmu.dk/atmosphericenvironment/Harmoni/M_V_KIT.htm. 
12 http://www.dmu.dk/AtmosphericEnvironment/gloream/. 

http://java.ei.jrc.it/Projects/MESOCOM
http://aix.meng.auth.gr/saturn/
http://bwplus.fzk.de/
http://java.ei.jrc.it/Projects/DAM
http://www.dmu.dk/atmosphericenvironment/Harmoni/M_V_KIT.htm
http://www.dmu.dk/AtmosphericEnvironment/gloream/
http://rem.jrc.cec.eu.int/etex/
http://rtmod.jrc.it/rtmod/
http://www.harmo.org/
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