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Abstract: This chapter focuses on the development of various Gaussian puff modeling techniques, 
with an emphasis on the relevant mathematics.  Beginning with the diffusion equation, we first 
discuss the linkage between the 3D puff and plume formulations and show how the puff approach 
overcomes many of the limitations associated with plume modeling, including the limit of calm 
winds.  The focus then shifts to consideration of the integral over source emission time and the 
integral-average over receptor time, both of which must be accomplished in an applied puff model.  
Puff model enhancements, including consideration of incorporating true puff dispersion 
coefficients and a detailed evaluation of the effect of wind shears on puff dispersion, conclude the 
chapter.  No attempt has been made to duplicate discussions from Chapter 7B (e.g., summation of 
images, dry deposition) that are also directly applicable to puffs. 
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1 Introduction 
 
In both the preceding Chapter 7B and Chapter 7A from a previous volume (Vol. 
1), the great simplicity and versatility of Gaussian plume formulations is evident.  
Extensive use of the plume formulation preceded that of the 3D puff because most 
near-field, high-impact source-receptor situations are adequately modeled by the 
plume and because the plume calculation can often be as computationally-simple 
as a “back-of-the-envelope” calculation; however, from a mathematical point of 
view, it is the puff which is more fundamental, deserving to be described first. 
 
To rationalize exploring the more computationally-intensive puff modeling 
approach, one must recall the significant simplifications and approximations that 
were invoked to reach the Gaussian plume, including: 
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• the steady-state assumption, implying time-independent flow and 
turbulence fields as well as source conditions; 

• neglect of most spatial gradients in flow and turbulence, though some 
shears can be approximated and plumes can be treated in a spatially-
segmented fashion; and 

• neglect of along-wind diffusion, though this can be shown to be related to 
the steady-state assumption. 

 
How can one avoid these approximations and simulate transport and diffusion as 
accurately as possible, especially in low-wind or meandering wind situations?  As 
mentioned above, “segmented-plume” models provide some relief, in that they 
can accommodate changing wind speed (i.e., for speeds over 1-2 m/s), wind 
direction, and stability class.  However, even segmented-plume models ignore 
along-wind diffusion, and are thus inappropriate for extended calm periods.   
 
Before delving into the puff in detail, consider first the most-detailed, opposite 
extreme to plume modeling.  Perhaps, the ultimate method is to characterize 
pollutant emissions as consisting of many mathematical point particles, with each 
particle carrying information about: 

• its current coordinates (x,y,z); 
• the pollutant species mass(es) it represents; and, 
• other possible “markers”, such as its source name, emission time, and 

current density (i.e., for plume rise calculations). 
 
Each particle can then be transported by the local flow (i.e., advective) and 
turbulent (diffusive) fields or conditions (e.g., statistical moments of turbulence) 
at each particle’s current location.  Of course, this approach is very close to 
mimicking the real emission process and is exactly the approach taken in 
Lagrangian particle modeling: many of the advantages of which are described in 
detail by Anfossi and Physick in Chapter 11 (Vol. 2).  Unfortunately, this 
approach also has an important limitation arising from the fact that in order to 
compute a concentration, one must essentially “count” the particles at or near a 
receptor, and this process implies a level of statistical uncertainty.  The process of 
computing concentrations can either be done by: (i) adding up the point particle 
masses within some finite-volume box imagined surrounding a receptor, and then 
dividing by the volume of the box; or, (ii) assigning each particle a sphere-of-
influence, considering only those particles whose sphere-of-influence includes the 
specific receptor point, and adding the “partial concentration contributions” from 
each particle to yield a total concentration at the receptor.  These “partial 
concentration contributions” are explicitly computed using a kernel estimator 
function, and there are many types of such kernel functions.  For example, 
imagine that the mass of a particle is smeared uniformly over some sphere of 
radius R.  Given that the 3D integral over this volume of V = 4·π·R3/3 must 
contain 100 % of the particle’s mass, m, one is led to assign a concentration 
contribution of C = m/V = 3·m/(4·π·R3) to receptors falling inside this radius of R 
and C = 0 to receptors outside of this radius.  This kernel, K, of 1/V is seen to be 
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little different from the coupling coefficient of box- or plume-modeling, except 
that its units of m-3 is appropriate for a particle of discrete mass rather than the 
usual coupling coefficient units of s·m-3 associated with a source having a 
continuous mass emission rate expressed in g·s-1.  This uniform density 
distribution kernel is not ideal, as it creates an unacceptable level of statistical 
noise due to its sharp drop in density at radius, R.  What is preferred instead is a 
kernel that peaks at the location of the particle and falls off rapidly with distance.  
De Haan (1997) describes a variety of such kernel estimators and relates their 
properties (e.g., second moments) to that of the Gaussian kernel in one, two and 
three dimensions.  In three dimensions the spherical kernel is given as:  
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where r2 = (x - x0)2 + (y - y0)2 + (z - z0)2 and the particle’s current center is located 
at coordinates (x0, y0 ,z0).  Of course, this kernel is nothing more than a spherically 
symmetric Gaussian puff. 
 
Thus, beginning with an emission of mathematical point particles, capable of 
precisely following the local flow and turbulence fields, coupled with the need to 
mitigate the statistical uncertainty noise associated with counting such particles, 
leads to a basic choice.  One may either (1) increase the number of mathematical 
point particles emitted to a point where the statistical noise is acceptable, or (2) 
envision the particles as having their mass distributed over some volume in space.  
As the second choice is generally far less computationally intensive than the first, 
a rationale for puff modeling emerges.  However, keep in mind that a weakness of 
this puff approach is that the larger the puff dimension, σ, the less the flow and 
turbulence sampling at the point (x0, y0, z0) is representative of conditions over the 
entire puff.  Thus, at the outset, one can realize the strength and weakness of the 
puff methodology in simulating air pollution problems. 
 
In Chapter 7B, the 3D advection-diffusion equation (ADE) was given as: 
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for the mixing ratio, φ, and mass concentration, C, respectively, and where scalar 
variables C, φ, ρ, S and D, vector wind field V , and tensor (or 2D matrix) 
diffusivity K may generally all be 3D functions of x, y, and z.  However, for the 
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simplified case of V = (u, v, w), with components u, v, and w and density ρ0 
uniform in space and time, and the rather sparse, diffusivity matrix of 

, containing only the diagonal and space-time uniform, 

diffusivity elements, K
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xx , Kyy and Kzz (or in their compressed notation form, Kx , 
Ky and Kz), one may write the solution of Eq.(2) as: 
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and where, for example, 

 
σx

2 ≡ σx0
2 + 2 · Kx ·( t - t0).   (3c) 

 
Parallel expressions can be written for the corresponding Y and Z dependent 
variables, utilizing the velocity components v and w and the diffusivity 
components Ky and Kz, respectively.  One also notes that the space-time zero 
point, (x0, y0, z0, t0), and initial dimension, σx0

 , may correspond to either the 
conditions at the time of initial release of mass m from the source or some other 
intermediate point in time (e.g., the conditions existing at the end of the previous 
computational time step in a multi-step model).  
 
The similarity between Eq.(1) and Eq.(3) is no accident.  As both equations are 
simply expressions of mass conservation and basically show that, under the stated 
uniformity conditions leading up to Eq.(3), the 3D Gaussian kernel, sometimes 
employed rather ad hoc in Lagrangian particle modeling, is identical to the 
solution of the 3D ADE for constant isotropic diffusivities. 
 
Equation (3) is the core equation for all puff models and it will be used as the 
starting point for many calculations in the sections that follow.  Also, it should be 
noted that much of what follows evolved during the development of the 
MESOPUFF II and CALPUFF models.  Much of the material for these sections 
has been drawn from the "Model Formulation and User’s Guide for CALPUFF" 
prepared by Scire et al. (1990b) for the California Air Resources Board.   
 
The CALPUFF model has continued to evolve for nearly two decades, though 
many of the basic puff and integrated-puff equations described herein remain 
unchanged since the Scire et al. (1990b) document.  The current version of 
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CALPUFF serves as a U.S. EPA Guideline model and is primarily documented in 
Scire et al. (2000). 
 
 
2 Theoretical Background             
 
2.1 The Puff-Plume Relationship 
 
While the ability of Eq.(3) to be a solution of the 3D ADE is important, the fact 
that the normalization of the distribution functions over all space yields unity (i.e., 
1.0) turns out to be more important from most practical considerations.  For 
example, the space integral of P(Z,t) over z yields: 
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where 
 
Z ≡ (z - z0 ) -  u ·( t - t0) . 
 
In the limit of integrating over all space (i.e.,  z1 → -∞,  z2 → +∞), 
N(Z,-∞,+∞) → 1, independent of the dependence of σz on time, t.   
 
This same sort of integration also helps to bridge the transition between the puff 
and plume formulations.  Rather than considering a few discrete puffs of mass m, 
imagine now a continuum of infinitesimal releases of size Q·dt', where continuous 
emission time t' takes the place of the discrete t0.  In order to achieve steady-state 
plume conditions, the source must have begun emitting long ago (e.g., at t' = - ∞) 
and still be emitting; whereas, the receptor might just have been turned on at time 
t = 0 and off at time t = T.  Thus, to reach steady-state plume limit, one needs to 
consider Eq.(3) for the case where the vector wind aligns with the +x axis, so  
V = (u, 0, 0), and then compute the following double-time-integral of Eq.(3): 
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where  
 

   X ≡ (x - x0 ) -  u ·( t - t' )          (5b) 
 
and the source is assumed to be located at (x0, y0, z0) = (0, 0, zS). 
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While σy and σz may be some arbitrary function of puff age or transport time (i.e., 
t-t'), the plume material reaching the receptor will do so at a relatively constant 
transport time – an approximation that becomes more valid as the along-wind puff 
dimension, σx, is taken to be small relative to transport distance,  
x = u · (t - t'), that is: 
 

σx <<  u · (t - t') = x.                    (5c) 
 
Thus, we may rewrite P(Y,t) and P(Z,t) as: 
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and consequently, take these two terms outside the integrations of Eq.(5a).   
 
This just leaves the P(X, t-t') term inside the integrals.  Now Eq.(5a) shows the 
emission time integration running from t' = -∞ to t' = +∞, even though it is 
obvious that any emissions later than t' = T cannot possibly (i.e., via causality) 
contribute to the receptor concentration, but we choose the t' = +∞ limit for 
simplicity.  Note that Eq.(5a) actually indicates that one is integrating over 
emission time but averaging over receptor time, t.  This is done because the time 
integral over receptor time yields an integrated-dose, whereas in Eq.(5a), one 
desires the average concentration, C.  Now there are two ways to perform the 
double-integration.  The more formal way involves integrating over receptor time, 
t, and the rotated variable t" ≡ t - t' ; however, as the actual plume concentration 
reaches steady-state, we note that the result of the receptor time integration must 
be T/T = 1, which reduces Eq.(5a) to a 1D integration, the result of which we 
already know from Eq.(4) to be: 
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u
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This is just the Gaussian plume equation of Eq.(1) in Chapter 7B, with the 
exception that the wind velocity is explicitly given as the vector mean wind speed, 
u, rather than the more commonly used scalar wind speed, U.  This is somewhat 
of a moot point for wind speeds in excess of 1 m/s, where the difference between 
the vector and scalar magnitudes is only a few percent.  For very low wind 
speeds, the condition expressed by Eq.(5c) is no longer met, so the derivation of 
Eq.(6) would no longer be valid.  Note that for very low wind speeds, the time 
dependence of the growth of the three σ quantities becomes important, such that 
the σ size values cannot be taken as "frozen" during the time of significant 
contribution of a puff to receptor’s concentrations, and thus, cannot be 
subsequently ignored in the evaluation of Eq.(5a).   
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One can actually obtain a clearer understanding of what happens as u → 0 by 
considering the case of a receptor at (0,0,0) and begin again with Eq.(5a).  
However, rather than assuming σx <<  u · (t - t'), as in Eq.(5c), we will take the 
opposite limit of σx >>  u · (t - t'), and further assume that early plume growth 
proceeds as σx =  σu · (t - t'), with σy and σz showing corresponding dependencies 
on turbulent velocities σv and σw, respectively.  In this case, Eq.(5a) becomes:  
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The t" integration yields Γ(1)/t0

2  1, where Γ is the Gamma function, with Γ(1) = 1, 
and the time-scale, t0, is the diffusive transport time, t0 = zS/σw.  Combining this 
result with the factor T coming from the receptor time integration, Eq.(7a) finally 
yields: 
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This result is very similar to the concentration estimated from Eq.(6), with the σy 
and σz values given as shown, except that the vector mean wind has been replaced 
by the quantity (2·π)½ · σu.  This factor of (2·π)½ is somewhat unexpected, as the 
scalar wind speed, U, is generally given as U = (u2 + σu

2)½, but one must 
remember that as u → 0, the diffusion occurs in both the "upwind" and 
"downwind" directions (i.e., if such directions can still be thought to exist at u = 
0).  In fact, this factor (2·π)½ is exactly the conversion factor from Gaussian to the 
"box" normalization we have seen in Chapter 7B.  That is, while advection will 
sweep out a dilutionary box of length u·∆t in a time ∆t, the effect of a diffusive 
turbulent velocity will lead to a box length of (2·π)½·σu ·∆t.  Hence, if one were to 
piece together an effective "dilutionary velocity" for the Gaussian plume model, it 
would not be U (i.e., what is commonly defined as the scalar wind speed), but 
rather the new velocity variable, U' ≡ (u2 + 2·π·σu

2)½.  Again, for moderate wind 
speeds, this second term is only a few percent of the contribution by u2.  Equation 
(7b) was obtained without invoking the need for the "frozen σ" approximation; 
however, given the widespread applicability of this approximation for even low 
wind speeds, we will have occassion to revisit it often in this chapter.   
 
2.2 Practicality Constraints for Puff Models 
 
Now that we understand the theoretical linkage between the puff and plume 
model, the connection between puff and Lagrangian particle models, and some of 
                                                 
1 ∫dt·exp(-a·tp)/tq = a(1-q) / p ·Γ((1-q)/p, a·tp) / p from http://integrals.wolfram.com , where Γ(α,x) is 

incomplete Gamma function.  Definite integral from Prudnikov et al., Vol. 1, pg 345, #2.3.18.2. 
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the advantages and limitations of puff models relative to the modeling techniques 
at the simpler (i.e., the Gaussian plume) and more computationally intensive (i.e., 
particle modeling) ends of the modeling spectrum, we have to decide what we 
really expect a practical puff model to deliver.  The feature wish list can indeed 
grow quite long, but to become a useful regulatory model, a viable puff model 
must: 

• deliver predictions that closely match plume predictions when conditions 
appropriate to the plume formulation pertain (e.g., steady-state emissions 
and dispersion conditions); 

• avoid pitfalls associated with requiring data that is rarely available (e.g., 
accurate fields of vertical velocities, w) 

• allow at least as much flexibility as plume models to include a variety of 
source types (e.g., points, areas, lines, volumes), near-source dynamical 
effects (e.g., plume rise, building wake effects), and loss mechanisms 
(e.g., dry/wet deposition, exponential decay); and, 

• permit realistic scenarios (e.g., involving hundreds of sources, thousands 
of receptors, on a domain a large as a few thousand kilometers) to be 
performed for time periods as long as five years using present-day and 
widely-available computers. 

 
Though the latter of these constraints is clearly not static, as computers become 
faster and cheaper, other constraints, such as providing accurate 3D winds 
(including w), are also evolving over time.  Thus, the design of a practical model 
must be flexible enough to facilitate evolution of the model’s capabilities.   
 
Much of the history of puff model development has been driven by the first of the 
above constraints, that is, to deliver predictions that closely match plume 
predictions when conditions appropriate to the plume formulation pertain.  
However, it is not immediately obvious that a finite series of discrete puffs will 
yield the continuous plume result.  Early puff models (e.g., Ludwig et al., 1977; 
van Egmond and Kesseboom, 1983; Peterson, 1986) evaluated the contribution of 
a puff to the concentration at a receptor by a "snapshot" approach.  Each puff was 
considered "frozen" at particular time intervals or sampling steps, and the 
concentration due to the "frozen" puff at that time was computed or sampled.  The 
puff was then allowed to move and evolve in size and mass until the next 
sampling step.  The total concentration at a receptor was then just the sum of the 
contributions of all nearby puffs averaged over all sampling steps within the basic 
time step.  Depending on the model and the application, the sampling and 
averaging time steps could be one hour (or longer), indicating that only one 
"snapshot" of the puff is utilized each hour.  In this case, a problem immediately 
arises because there will be holes (or gaps) in the plume concentration precisely 
where there are spaces between the discrete puffs.  
 
Thus, a traditional drawback of the puff approach has been the need for the 
release of many puffs to adequately represent a continuous plume close to a 
source.  Ludwig et al. (1977) have shown that if the distance between puffs 
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exceeds about 2 · Φy, inaccurate results may be obtained.  Figure 1 shows that 
reasonable results are obtained for puff separations of no more than Φy.  If the 
puffs do not overlap sufficiently, the concentrations at receptors located in the gap 
between puffs at the time of the "snapshot" are underestimated.  While the 
normalization used in Figure 1 fixes the concentration at unity at the puff center, 
an un-normalized plot would show that for puff separations exceeding Φy, 
concentrations near the puff centers are overestimated.  Ludwig et al. (1977) 
recommended spacing puffs uniformly in space, rather than in time, with a puff 
merging/purging scheme to reduce the total number of puffs.   
 
As visualized in Figure 2, Zannetti (1981) suggested tracking fewer puffs than 
necessary for adequate sampling, but then saturating the area near a receptor with 
synthesized, interpolative puffs, in order to provide the required puff overlap. 
 
Although both schemes act to reduce the number of puffs carried by the model, 
considering puffs as "snapshots" in space and time still requires that an 
uneconomically large number of puffs be generated near the source.  For example, 
at a receptor 100 meters from a source, and assuming Pasquill-Gifford-Turner 
(PGT) dispersion rates, puffs at a density corresponding to a release rate of over 
1300 puffs/hour are required to meet the two-Φy criterion for F stability, 3 m/s 
wind conditions.  During high wind speed, neutral conditions (10 m/s, D 
stability), nearly 2200 puffs/hour are needed.  The more stringent, one Φy 
criterion, would double the number of puffs required. 
 

 
 

Figure 1.  Normalized concentration between two puffs within a series of 
puffs having equal size and spacing.  [From Ludwig et al., 1977.] 
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Figure 2.  Illustration of the puff generation scheme of Zannetti (1981).  A 
plume is represented by puffs A and B at time t.  Subsequent transport 
moves these puff centers to locations A' and B' at time t+∆t.  
Concentrations at receptor R will not be well approximated by these four 
puffs, so they are subdivided into ns puffs in space at nt sub-time intervals. 
Such interpolative puffs are shown by the *  symbol.  [From Zannetti, 1981.] 

 
2.3 Integral Approximations for Sampling and Continuous Emissions 
 
Faced with the high computational cost of sampling so many puffs, something 
had to be done to simplify the problem for a majority of cases, including: 

• the far field where many large size puffs contribute to each receptor; and, 
• the near field of continuous point sources where many hundreds of puffs 

and sampling sub-time-steps might be needed to emulate a continuous 
point source to avoid incurring holes in the concentration field. 

 
Where approximations must be made can be better seen by considering the 
snapshot concentration contribution from a puff to a receptor located at space-
time coordinates, (x, y, z, t).   This instantaneous level can be simply written as: 
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with subscript β denoting alongwind and crosswind axis subscripts a and c, 
respectively, such that da and dc are the respective alongwind and crosswind 
distances from the puff center to the receptor, and where 
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Note that this is a slightly different use of the notation for the function P from 
previous use, in that the plume standard deviations are now explicitly referenced 
and explicit inclusion of the time variable has been suppressed.  The time variable 
has been explicitly dropped as nearly every variable in Eq.(8), including Q, da, dc, 
zS, σa, σc, and σz, can be an explicit or implicit functions of time; thus, rendering 
explicit display of the time variable rather academic.   
 
As in the case of Gaussian plume modeling (Chapter 7B), zS is the effective 
source height of the puff above the ground and h is the mixed-layer depth.  
Similarly, the vertical term, Pz, includes the multiple reflections from the ground 
and inversion lid, and rapidly converges to the uniformly mixed limit of Pz = h-1 
for Φz > 1.6 h.  In general, puffs within the convective boundary layer meet this 
criterion within a few hours after release, permitting some level of simplification 
for models designed solely for mesoscale through long-range transport.   
 
Nevertheless, having so many of the variables present in Eq.(8) being time-
dependent suggests that performing integral summing over emission time and 
integral averaging over receptor time may be a formidable task.  Two alternatives 
to the conventional snapshot sampling function are discussed below.  Both utilize 
the previously-discussed "frozen Φ" approximation to avoid having time-
dependence in the denominators of the exponential terms (i.e., due to time-
dependent dispersion, Φs), though the rationales used for invoking this 
approximation differ. 
 
2.3.1 The MESOPUFF Integrated Puff Sampling Formulation 
 
The MESOPUFF II model (Scire et al., 1984a, b) introduced the notion of an 
integrated puff sampling function and also provided some simplifications for 
near-field applications.  In the far-field, the developers assumed that over a given 
time step, puffs in the far-field grow fractionally by only a small amount such that 
frozen dispersion Φs might be presumed.  They further assumed that these 
receptor-specific, frozen sigmas could be obtained by interpolating between the 
puff sigmas at the beginning and end of the time step to the downwind distance 
associated with the point of closest approach.  In the cases where the downwind 
point of closest approach was beyond the beginning- or end-point of the puff 
trajectory segment, the nearest end-point sigma values were utilized.  In addition, 
this integrated puff sampling scheme assumed radially-symmetric Gaussian puffs. 
 



292  Air Quality Modeling – Vol. III 

For a horizontally symmetric puff with Φ ≡ Φa = Φc, Eq.(8a) reduces to: 
 

zPRPQzyxC ⋅⋅= ),( ),,( σ       (9a) 
 

where 
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where R is the receptor to puff center distance, such that, R2 = da

2+ dc
2.  Now 

consider the parametric variable, p, conceived so that p = 0 at the beginning of the 
time step and p = 1.0 at the end of the time step.  Consider a puff moving from 
initial coordinates (x1, y1) at p = 0 to final coordinates (x2, y2) for p = 1.  Assuming 
the puff trajectory segment is a straight line, the radial distance to a receptor at 
(x,y) in terms of the parameter p is:  R2 = (x1 + p·dx – x)2 + (y1 + p·dy – y) 

2, where 
dx ≡ x2 – x1 and dy ≡ y2 – y1.  Furthermore, one may assume that any changes in 
the puff’s mass due to wet and dry removal processes can also be linearized such 
that, Q(p) = Q(0) + p·∆Q, with ∆Q ≡ Q(1) - Q(0) typically being negative for loss 
mechanisms.  Finally, freezing the value of the sigmas to their midpoint values at 
pm = 0.5, such that Φ ≡ Φ(pm) and Φz ≡ Φz(pm), enables one to express the time-
averaged receptor concentration over the time period T as: 
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2

 ),,,(1 1

0
2 σ

σπ
pRPpQdpPtzyxCdt

T
C z

Tt

t
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⋅⋅
=⋅≡

+

  (10) 

 
where Pz has been taken outside the integration for the most typical case, the puff 
centerline height does not change over the time averaging period, and the sole 
dependences on p remain in the puff mass Q and the radial distance function, R.  
Re-expressing R2/σ2 as a·p2+2·b·p+c within the exponential, 
with a, b and c given as: 
 
a = (dx2 + dy2) / σ2  ,  
 
b = [dx · (x1 - x) +  dy · (y1 - y)]  / σ2 , and  
  
c = [(x1 - x)2 +  (y1 - y)2]  / σ2 . 
 
“Completing the square” (see Chap 7B) within the integrand, one is left with 
integrands of the form exp(-x2) and x · exp(-x2), that are known integrals, so the 
results may be expressed as: 
 

 ])0([
2

 212 IQIQPC z
⋅∆+⋅⋅

⋅⋅
=

σπ
   (11a) 

where 
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and              (11b) 
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As mentioned, both the horizontal dispersion coefficient, Φ, and the vertical term, 
Pz, are evaluated and held constant throughout the trajectory segment and are 
computed at the mid-point (i.e., p = 0.5) of the segment in MESOPUFF II.   
 
Again, at mesoscale distances, the fractional change in the puff size during the 
sampling step is usually small, and the use of the mid-point values of Φ and Pz is 
adequate.  This assumption also reduces the number of times that the dispersion 
coefficients and vertical reflection terms need to be computed to once per 
sampling step (independent of the number of receptors).  However, this 
optimization for mesoscale distances may not be appropriate in the near-field 
where the fractional puff growth rate can be rapid and plume height may vary.  
For this reason, the integrated sampling function for the CALPUFF model (Scire 
et al., 1990b) was implemented with receptor-specific values of Φ and Pz, 
evaluated at the point of closest approach of the puff to each receptor.  This point 
was initially limited to the p = 0 thru p = 1.0 physical segment of the puff’s 
trajectory, although some extension beyond these end-points by a fractional 
amount of the end-point sigma values was implemented in the code to ensure self-
consistent results. 
 
2.3.2 The CALPUFF Slug Formulation and Sampling Functions 
 
The integrated puff sampling function approach ensures that puffs are properly 
sampled by the receptor, but this does not ensure that the puffs are spaced closely 
enough to ensure proper representation of a continously emitted plume.  To 
accomplish this, one must either emit puffs at a rapid enough rate (i.e., the 
dilemma faced in earlier puff models) or develop a methodology to account for 
both continuous emission and integral-average receptor sampling.  This latter 
methodology can be achieved only if one is able to perform the double-integral 
over both emission time, t', and receptor time, t.  This same double-integral was 
considered in Eq.(5) with the accompanying discussion showing the linkage 
between the puff and plume formulations; however, the same integrals are not 
considered using a finite emission duration beginning at time t' = 0 and ending at 
t' = tE , with the understanding that the tE ≤ t , the current sampling time, and the 
latest time which causality tells us can contribute to any impact.  For the case of a 
source located at (x0, y0, z0) and wind aligned with the x-axis, the receptor 
concentration, C(x,y,z,t), integrated over emission time, t', is now: 
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ttXPdtZPYPQtzyxC x

Et

zy −⋅⋅⋅⋅= ∫ σσσ   (12) 

 
where X ≡ (x - x0 ) -  u ·( t - t' ) , Y = y - y0 , and Z = z - z0 . 
 
Note that the P(Y,σy) and P(Z,σz) functions have already been taken outside the 
integral.  In the discussion accompanying Eq.(5), this was justified on the basis of 
assuming the condition of Eq.(5c), that is, that along-wind diffusion was much 
smaller than the relevant transport distance to the receptor, or σx << x.  Shrinking 
σx has the effect of forcing all the impact of emissions at time t' to be experienced 
at the receptor at the fixed time difference, t - t' = x/ u, which in turn forces the 
dispersion coefficients, σ(t - t' ), to take on fixed (or “frozen”), receptor-specific 
values.  In the more general case of larger σx, where a wider range of time 
differences (i.e., t - t' ), and hence differing σ values, contribute to the 
concentration, we continue to apply the “frozen σ” approximation, on the practical 
grounds that it links one back to the Gaussian plume formulation for which the 
empirical σ functions were determined from experiment in the first place.  This 
insistence on a firm linkage to the Gaussian plume formulation is also a constraint 
imposed by regulatory agencies, which would be hard-pressed to explain why 
their puff model, run under conditions that emulate steady-state conditions, did 
not give the same answer as their plume model.   
 
Performing the t' integration in Eq.(12) then yields the result:  
 

)/(),(),( ),,,( uFZPYPQtzyxC zy ⋅⋅⋅= σσ    (13a) 
 
where F is the causality factor given as: 
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Consistent with the discussion in Section 2.1, considering the limit of the vector 
mean wind, u→0, and to ensure a better match with the Gaussian plume, the 
factor 1/u is shifted to 1/U in terms of the scalar wind, and a factor, u/U is injected 
into the crosswind component to ensure that the sense of “crosswind” versus 
“downwind” vanish at u = 0.   
 
The final expression for the snapshot concentration field due to such a pollutant 
“slug” then can be written as: 
 

)/(),(),( ),,,( UFZPYPQtzyxC zy ⋅⋅′⋅= σσ   (14a) 
 

where  
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the causality factor F is re-expressed as: 
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This form now matches the formulation used in the CALPUFF model (Scire et al., 
1995).  Note that to achieve this match, the additional assumption, σx = σy, was 
injected for simplicity, and the distances dc and da introduced as the cross-slug 
(i.e., perpendicular to the slug axis) and along-slug distances, respectively, to the 
receptor.  In particular, da2 is the receptor distance from the “youngest” slug end 2 
(with da2 > 0 in the direction of end 1), that is da2 = xR – x2, whereas the receptor 
distance from the “oldest” slug end 1 is defined as: 
 

 -da1 = da2 - ℓxy, =  xR – x2 – (x1 – x2) =  xR – x1    (14d) 
 
where ℓxy is the length of the slug projection in the x-y plane, and where ℓxy= u·tE 
in this case.  Again, the subscripts 1 and 2 on the dispersion coefficients refer to 
values at the “oldest” and “youngest” ends of the slug, respectively, while the 
absence of a numerical subscript indicates a value defined at the receptor. 
 
This "slug" formulation retains many of the important properties of the circular 
puff model, while significantly reducing puff overlap problems associated with 
snapshot sampling of circular puffs.  As it must, Eq.(14) explicitly conserves 
mass.  As with circular puffs, each slug is free to evolve independently in 
response to the local effects of dispersion, chemical transformation, removal, etc.  
Also, the concentration distribution within the body of the slug, well away from 
the slug endpoints, approaches that of the Gaussian plume distribution.  Finally, 
the concentrations near the endpoints of the slug (both inside and outside of the 
body of the slug) fall off in such a way that if adjacent slugs are present, the 
plume predictions will be reproduced when the contributions of those slugs are 
included (again, during steady-state conditions).  This property can be proven by 
imagining that the previously emitted slug has ends labeled 0 and 1, with the #0 
end being the oldest, and the newest end #1, coincident with the current #1 end 
representing the oldest part of the current release (i.e., the new end point of a 
previously released slug is co-located with the old end point of the slug 
subsequently released).  This means that the summed concentration distribution 
from the two slugs will be: 
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or, with cancellations, this becomes: 
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Thus, assuming meteorology and emissions remain unchanged, consecutively 
released slugs combine to form a longer single slug, and ultimately, if the process 
is repeated, would form a complete Gaussian plume.    
 
This fact illustrates the concept that the "causality" function, F, accounts for edge 
effects near the endpoints of the slug.  For long emission times, such that u· tE » 
Φx, and points well inside the body of the slug, evaluation of the error functions in 
Eq.(14c) produces: F = 0.5·(1 - (-1)) = 1 (i.e., no edge effects).  For receptors well 
outside the slug, F becomes zero, indicating that the pollutant material has not yet 
reached the receptor or has already passed it.  Near the endpoints, the causality 
factor produces a leading/trailing Gaussian-like tail on the distribution. 
 
The factor (u/U) allows low wind speed and calm conditions to be properly 
treated.  As u approaches zero, the exponential crosswind term becomes unity and 
F → )]2/([ yaderf σ− .  Under these conditions, the radial concentration 
dependence of the distribution is determined by the causality factor.  For u greater 
than a few meters per second, (u/U) is very close to one, so that this ratio becomes 
unimportant.  The factors (u/U) and F make the slug model more "puff-like" than 
segmented plume models (e.g., Hales et al., 1977; Benkley and Bass, 1979).  
Also, unlike the slug model, segmented plume models generally do not properly 
treat low wind speed conditions or segment edge effects.  
 
Equation (14) represents a "snapshot" description of the elongated puff or slug at 
time t; however, as with the "snapshot" puff equation, Eq.(14) must be integrally-
averaged over the receptor’s sampling time step to produce a time-averaged 
concentration, ),,( zyxC .  In the case where the emission rate and meteorological 
conditions do not vary during the sampling step, a generalized analytical solution 
to the integral can be obtained for "emitted" slugs (i.e., where the endpoint of the 
"youngest" end of the slug is at the source) as: 
 

FZPYP
U
QzyxC zy ⋅⋅′⋅= ),(),( ),,( σσ    (16a) 
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where the time-averaged causality factor, F , is given as: 
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and where, 
 

)2/(2 yab d σξ ≡  accounts for the beginning of the sampling time step,

 )2/()( 2 ySae tud σξ ∆⋅−≡  represents the end of the sampling step, and 

 )2/( 222 yad σφ ≡ represents the steady-state conditions at the source, with 
 Φy2 representing any initial lateral spread of the emissions at the source. 
 
Note that Eq.(16) applies to the case where the sampling interval, (0, ∆tS), is the 
same as the emission interval, (0, tE), as is normally the case for fresh, continuous 
emissions (i.e., since emissions for tE  > ∆tS cannot causally contribute).  
However, as the indefinite integral, π/)exp()(  )( 2xxerfxxerfdx −+⋅=⋅∫ exists, 
the more general solution could have been written. 
  
For older slugs, the endpoint of the slug is no longer fixed at the source and the 
long axis of the slug is not necessarily along the current advecting wind direction.  
Additionally, the two end points may experience different winds, causing rotation 
and stretching of the slug.  In this general case, an analytical integration of 
Eq.(14) is not possible for such slugs unless restrictive conditions are imposed on 
the form of the puff growth equations.  Because of the importance of generality in 
the puff growth equations, the time-averaged concentrations associated with older 
slugs are determined via numerical integration of Eq.(14) and such integration can 
generally be accomplished at reasonable computational cost.  For example, Figure 
3 displays the snapshot concentration isopleths of a slug at the beginning (left) 
and end (right) of a particular sampling time step, whereas Figure 4 shows the 
result of the numerical integral averaging over the same time interval. 
 
The above development also ignores the effect of loss or production mechanisms; 
however, this can be handled in much the same "linearized" manner that 
MESOPUFF II invokes.  This is accomplished by allowing the effective emission 
rate, Q, to vary linearly over time as: 
 

Q(t) = Qb + (Qe – Qb) · (t /∆tS)   (17) 
 
where Qb is the effective emission rate for the slug at the beginning of the time 
step (note that Qb = Q for fresh emissions), Qe is the effective emission rate 
including loss or production which occurs during the time step, and ∆tS is the 
duration of the time step. 



298  Air Quality Modeling – Vol. III 

 
 

Figure 3.  Isopleths of a slug "snapshot" at two points in time.  The slug at 
left shows concentrations at some early time, whereas the snapshot at right 
shows the isopleths of the same slug at a later time.  During the intervening 
time, the slug clearly experienced advection (to the right), diffusion, and 
some along-slug stretching due to wind shear. [From Scire et al., 1990b] 

 

 
 

Figure 4.  Receptor-time averaged concentrations resulting from numerical 
integration of the evolution of the slug depicted in Figure 3 from its initial 
(left) to its final (right) "snapshot" states. [From Scire et al., 1990b] 
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The variable ξ in Eq.(16) can also be written as the function: 
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following Eq.(16b), so that the causality function of Eq.(14c) can be written: 
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Thus, the time averaging process yields: 
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where 0F  is F  from Eq.(16b) and 
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where the integral, )exp(1)(  )( 2xxerfxxerfdx −⋅+⋅=⋅∫ π
, has already  

been used to obtain Eq.(16b) and where the integral, 

)(
4
1)exp(

2
1)(

2
1  )( 22 xerfxxxerfxxerfxdx ⋅−−⋅⋅+⋅⋅=⋅⋅∫ π

, is a special 

case of the more general expression developed by Geller and Ng (1971) in terms 
of the generalized hypergeometric function 2F2. 
 
Generalizing the problem of dealing with older slugs is straightforward if one 
chooses a numerical integration (i.e., time-average) of Eq.(14).  The time 
dependent expression Q(t) given by Eq.(17) simply replaces Q and the numerical 
integration proceeds. 
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However, this numerical integration process has itself received special attention 
because it greatly influences the computing time needs of the slug model.  First, 
all receptors lying outside of the slug's ± 3 Φy envelope during the entire 
averaging time interval are eliminated from consideration.  Second, for those 
receptors remaining, integration time limits are computed such that sampling is 
not performed when the receptor is outside of the ± 3 Φy envelope. 
 
Invocation of the "frozen Φ" methodology (i.e., Φy and Φz are fixed at receptor-
specific values throughout the averaging time period) creates another class of 
situations which can be integrated analytically; however, the most general case 
involves indefinite integrals of the form: 
 

     (23)  )()exp( 22∫ ⋅+⋅⋅−⋅ tbaerftdt β
 
which defy solution except in a few simple cases (e.g., a = 0 and b = ∃).  In fact, 
integrability has proven not to be the sole criteria in these slug sampling 
problems.  For example, the preceding work on linear time variation of loss (or 
production) mechanisms can also be evaluated for the more realistic exponential 
process; however, the analytic forms are found to be very volatile on a computer 
because subtraction of large numbers to obtain small numbers is required. 
 
One tractable case involves the quite physical scenario of a slug passing rapidly 
over a receptor and with slug endpoints sufficiently far away that the along-slug 
causality factor, F(t), is time independent.  In this case, the causality factor also 
becomes fixed and can be taken outside the integral and approximated as: 
 

   )(
2
1 eb FFF +⋅=     (24) 

 
which is just the average of values at the beginning and end of the time step.  This 
approximation is, however, made only if Fb and Fe are within a specified small 
fractional tolerance of each other.  A similar procedure enables one to move the 
vertical coupling factor, P(Z,σz), outside the integral and replace it with the mean 
value, P , provided that the initial and final values are within a small tolerance 
window (e.g., a few percent).  Finally, the variability of the lateral coupling term 
of Eq.(14b) to temporal variation of the crosswind distance, dc(t), is checked and 
the integrals: 
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m = 0 and 1.  These integrals can be solved to yield: 
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so that the final, time-averaged concentrations can be written as: 
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as an alternative to numerical integration for some older slugs. 
 
Vertically integrated counterparts to Eq.(20) and Eq.(27) are also required in 
CALPUFF for evaluation of wet removal and wet fluxes at a ground level 
receptor; however, given the normalization properties of the Gaussian, these are 
obtained by replacing P(Z,σz) with 1.0 in Eq.(20) or ),( zZP σ  with 1.0 in Eq.(27).   
 
It should also be noted that decision logic in CALPUFF allows slugs in the near-
field to transition to puffs in the far-field.  This decision process is based 
primarily on the eccentricity of the overall slug shape; that is, axial slug length 
relative to the size of the horizontal dispersion coefficients at the slug end points.  
It should be noted in such conversion that one must have retained both the slug’s 
effective emission rate, Q, as well as the original emission duration, tE, for that 
slug, so that the slug mass of Q · tE is available for puff computation purposes. 
 
Both the original California ARB documentation (Scire et al., 1990b) and the 
more recent report on CALPUFF Version 5 (Scire et al., 2000) contain extensive 
documentation on the absolute and comparative accuracy and computation times 
of the various slug and puff formulations discussed herein.   
 
In addition, several model evaluations using hour-average tracer concentrations 
have been performed (e.g., IWAQM, 1998; Strimaitis et al., 1998; Chang et al., 
2003) and CALPUFF was found to be more reliable predictor of ambient 
concentrations than ISC3.   
 
 
3 Puff Model Enhancements             
 
The integrals discussed in the previous section lie at the heart of the CALPUFF 
model, but this model is now a comprehensive code exceeding 50K lines and 
includes a full range of phenomena that must now be explicitly considered.  For 
example, CALPUFF has modules for many, near-source effects (e.g., plume rise, 
stack and building downwash, partial lid penetration), complex-terrain plume 
dynamics, mass depletion (e.g., dry and wet deposition) and transformation 
mechanisms, and specialized meteorological conditions (e.g., fog).  The 
CALPUFF modeling system also contains a graphical interface for setting up and 
managing runs; preprocessor programs for emissions, meteorology, land-use, 
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terrain and other input files; and postprocessor programs for various longer-term 
concentration averages and visibility.  An exposition of most of these features is 
beyond the scope of this chapter; however, in the following subsections, we 
consider some phenomena that are fundamental to the puff model itself.  
 
3.1 Dispersion Coefficients for Puff Modeling 
 
Short duration pollutant releases and human exposures can have important 
consequences: toxic gas releases and odor impacts being among the clearer 
examples.  Historically, puff models have been developed with an emphasis on 
predicting one-hour (and longer) average concentrations on meso- through 
regional-scale domains.  Hence, the model’s basic time step for taking in new 
meterology (e.g., a specific wind speed and direction at each source) was one hour 
or longer, and the dispersion coefficients were tailored to reflect all dispersive 
mechanisms that contribute during a corresponding averaging time interval.  That 
is, the dispersion rate of individual puffs is effectively convoluted with the lower 
frequency meandering of wind direction to yield overall dispersion coefficients 
that in-turn yield reasonable, hourly or multi-hour average concentrations.  More 
specifically, in the case of CALPUFF, regulatory dispersion coefficient schemes 
were chosen so predicted concentrations would exactly match the results of the 
Gaussian plume ISC3 model (i.e., if CALPUFF is run using steady-state 
emissions and meteorology conditions for a sufficiently long time to avoid 
"transients" associated with initiation of emissions or the "causality" lag 
associated with source to receptor transport).   
 
One way to account for shorter, time-average concentrations in CALPUFF is to 
allow input of peak-to-mean concentration ratio factors into CALPUFF’s post-
processor program (i.e., CALPOST).  This feature improves the utility of 
CALPUFF in applications involving odor and short-term toxic exposure 
problems. 
 
To more realistically simulate shorter averaging time periods when suitable 
meteorological data are available, the most recent version of  CALPUFF (i.e., 
Version 6) pemits updates of meteorological fields as often as once per minute.  
Optimal use of this rapid-update feature requires that the dispersion coefficients 
be appropriately matched to the meteorological field update interval.   
 
Traditionally, such shorter averaging-time quantities have been estimated from 
longer-time-averaged measured data via the averaging-time power-law scaling: 
 

σ(τ1) ≈ (τ1/τ2)p · σ(τ2)     (28a) 
 
where τ1 and τ2 are the two relevant averaging times, and p is the appropriate 
power-law exponent.  For averaging times shorter than one hour, a value of  
p = 0.2 for τ in the range of 3 - 60 minutes has been suggested by Gifford (1975) 
for σy; whereas, smaller exponents over a more limited range of averaging times 
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(e.g., 3 - 20 min.) are considered for σz (Pasquill, 1976).  Discussion continues 
over the importance (Hanna et al., 2003) and appropriateness (Venkatram, 2002) 
of making such power-law corrections for averaging time.  Currently, CALPUFF 
permits averaging time corrections, of the type expressed by Eq.(28a), to be made 
only for the Pasquill-Gifford σy dispersion curves.  The other parameterized 
dispersion curves available for use in CALPUFF cannot be so scaled, as 
appropriate guidance does not appear in the literature. 
 
Another dispersion coefficient alternative for short averaging times that is 
presently offered within CALPUFF is the ability to compute dispersion 
coefficients based on locally measured values of turbulence (i.e., σv and σw) and 
the formulae:    
 

σy = σv · t · fy(t/τy)  and  σz = σw · t · fz(t/τz)  (28b) 
 
where fy(t/τy) = 1.0 / [1.0 + 0.9 · (t/τy)½ ] and  fz(t/τy) = 1.0 / [1.0 + a · (t/τy)p ] , with 
(a, p) = (0.9, 0.5) for unstable conditions and (0.945, 0.806) for stable conditions.  
This Eq.(28b) approach to dispersion uses Irwin’s (1983) recommended 
implementation of Draxler’s (1976) forms for the fy and fz functions, and currently 
incorporates a fixed value for τy of 1000s and fixed values for τz of 500s and 100s 
for unstable and stable conditions, respectively. 
 
Unfortunately, the validity of Eq.(28b), including the appropriate forms for fy and 
fz and their accompanying coefficients and time scales, has not yet been 
extensively evaluated for short averaging times. 
 
The most elegant approach to modeling short averaging times would be to build 
in a model option to choose true “puff sigmas”; however, appropriate 
formulations are not widely available over a significant range of transport times 
and dispersion conditions.  A series of true puff tracer release experiments (e.g., 
BOREX89, BORRIS94, GUARDO, MADONA, FLADIS, COFIN) were recently 
performed, and an analysis by Mikkelsen et al. (2002) of several such experiments 
combined suggests a linear time-dependent puff growth law of:  
 

σpuff(t) ≈ 0.73 · U* · t      (29) 
 
where U*(m/s) is the surface friction velocity and t(s) is puff travel time.  
Equation (29) was found to be appropriate for near-surface releases and has been 
confirmed only for σpuff(t) ≤ 25m.  Of course, such early-phase puff growth gives 
way to a period of accelerated t3/2 growth (Richardson, 1926; Batchelor, 1950), 
which has been observed (Gifford, 1977), and concludes with Taylor’s (1921) t1/2 
growth (i.e., which may or may not ever be observed due to the eventual 
dominance of wind shear induced growth).  
 
It is interesting to note that the coefficient of 0.73 is about half of that used in 
typical, turbulence-based, dispersion coefficients [e.g., σy = 1.6 ·U*  · t · f(t/τy) and  
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σz = 1.3 · U*  · t · f(t/τz)] that may be computed within CALPUFF (i.e., when the 
turbulence-based dispersion option is chosen and the turbulence is computed from 
surface-layer formulae).   These larger coefficients of U*·· t result from the fact 
that these larger dispersion coefficients include a significant wind-meander 
component along with the true puff dispersion. 
 
Clearly, if puff sigmas are employed, then some explicit formulation of wind 
direction meander, such as that of Oettl et al. (2005), also ought to be available for 
the computation of the concentration cumulative frequency distribution and/or 
longer time averages.   
 
3.2  Wind Shear Effects on Puffs  
 
While puff models are often driven by a wind field model that allows for spatially 
and varying wind fields, the entire puff is usually just transported by the wind at 
the center of the puff, such that wind gradients or shears are ignored.  In some 
cases, the accumulated wind shear is tracked and, when large enough, leads to a 
splitting of the puff into two or more puffs.  However, the successful 
incorporation of shear into plume models [i.e., Walcek (2004) as discussed in 
Chap. 7B], leads one to ask if this could also be done for puff models.   
 
The reason the puff model formulations generally ignore explicit shear is that they 
stem from the solution of the diffusion equation with an assumed diagonal 
diffusivity matrix.  That is, they begin with the diagonal diffusivity matrix, Kd, 
rather that the full diffusivity matrix, K, where both are given as: 
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Now the Kd form of the diffusivity matrix leads to the well-known puff solution: 
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  (31) 

 
where m is the mass within the puff.  Replacing the terms 2·K·t with their 
equivalent σ2 then leads back to the Eq.(3) form introduced earlier.   
 
Unfortunately, Eq.(31) does not allow for the introduction of puff-distorting wind 
shear terms; however, expansion of the basic advection-diffusion equation [i.e., 
Eq.(2)] in terms of Taylor series for the winds and concentrations shows (e.g., 
Yamartino, 2000) that one can include the effects of wind shears either through 
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purely advective terms or via diffusive terms involving the off-diagonal terms of 
the full K matrix.   
 
The less well-known solution to the full diffusivity matrix form (Anderson, 1984; 
Wegener and Schroeter, 1995) can be written for an arbitrary number of 
dimensions, n, as: 
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transpose row vector, with (xc, yc, zc) being the center coordinates of the puff, and 
|D| is the determinant of matrix K.  It is also useful to know that Eq.(32a) can 
alternatively be written in terms of the dispersion sigmas as: 
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Expanding the n = 3 solution for the inverse K-1 yields the rather messy result: 
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where 
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One notes that the 2D, y-z plume solution appears much simpler as: 
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with determinant, 
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Comparison with the plume solution of Walcek [see Chapter 7B, Eq.(45)] 
suggests that:  
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If one further assumes that Kzy = - Kyz , as is necessary to achieve the sign flip 
between the left and right sides of Eq.(34c), then one concludes that Walcek’s 
plume solution requires2: 
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This is fine, except that a K ratio proportional to travel time, t, shows that the 
needed solution for a constant crosswind velocity shear, (∂v / ∂z), does not simply 
involve the purely, space-time invariant K values usually assumed for the Eq.(32) 
solution of the time-dependent diffusion equation in n dimensions.   
 
Nevertheless, for the puff, we consider the case of the two most important 
velocity shears: uz ≡ (∂u / ∂z) and vz ≡ (∂v / ∂z).  This means that the determinant 
will now appear as: 
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where the added substitutions:      
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Thus far, the 3D K matrix approach is useful, as it has yielded the correct form of 
|D|; however, continuing further with the K matrix strategy requires one to specify 
the Kxy term, and this is not obvious nor can it be neglected.  Instead, we step back 
to the Walcek solution [Chapter 7B, Eq.(45)], add in the x-component ingredient 
of the puff formulation, and temporarily ignore uniform advection (i.e., as the 
principle of translational invariance will always permit us to re-inject uniform 
advection).  Without uniform advection, there is no preferred orientation for the x-
y axes, except for the directionality dictated by shear.  Thus, imagine a coordinate 
system where the effective total shear is aligned along the y' axis.  In this case, 
one might guess the equivalent puff solution to be:  
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where σh is the lateral dispersion coefficient,  
 
and as before, 
 

     and   s12/1  22 sf +≡ 2 ≡ su
2 + sv

2.      (37b) 
  

Given that Walcek’s 2D solution conserves mass, one can be quite sure that 
Eq.(37a) will at least conserve mass in 3D.  Now, one simply rotates back from 
the (x', y' ) axes to the usual (x, y) frame via substitutions:   
 

y' = y · cos(θ)  +  x · sin(θ)  and  x' = x · cos(θ)  -  y · sin(θ)      (37c) 
 
where   
 

  sin(θ) = su / s and cos(θ) = sv / s                   (37d) 
 
After expanding the substitutions, collecting terms, and re-inserting uniform 
advection, one recovers the full puff solution of: 
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where  
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x'' ≡ x – {x0  + [u0 + ½ ·(∂u/∂z)·w0·t]·t},   y'' ≡ y – {y0  + [v0 + ½ ·(∂v/∂z)·w0·t]·t},  
 
and  
 

   z'' ≡ z – (z0  + w0 · t )          (38c) 
 

with (x0, y0, z0)  and (u0, v0, w0) being the coordinates and winds at time t = 0.  
These initial values are typically the coordinates and winds at the source.  Note 
also that any vertical velocity component, w0, is assumed to be constant over the 
time period t. 
 
Verification that Eq.(38) is indeed a solution of the diffusion equation requires 
that one switch back to the K representation by substituting σ2 = 2·K·t everywhere 
(and with appropriate subscripts).  The number of terms involving time, t, is quite 
intimidating, such that evaluation of whether Eq.(38) is a solution of the diffusion 
equation, 
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is best accomplished using a computer algebra program, such as Maple (i.e., a 
software package sold commercially by Waterloo Maple, Inc.) or Mathematica 
(i.e., a software package sold commercially by Wolfram Research, Inc.).  This has 
been done and Eq.(38a) is indeed an exact solution of Eq.(39a). 
 
One might immediately question why the off-diagonal diffusivity terms don’t 
appear in Eq.(39).  The answer is that the off-diagonal terms, such as: 
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all vanish for pure wind-shear related diffusivities, as Kxz = - Kzx are 
antisymmetric in their subscript indices, and the equality of the partial second 
derivatives, such as: 

http://en.wikipedia.org/wiki/Waterloo_Maple
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is almost always guaranteed for C given by analytic functions.  Note that if the 
off-diagonal diffusivity terms contained true diffusion components, these portions 
of the off-diagonal K elements would be symmetric, and addition rather than 
cancellation would occur. 
 
The solution provided by Eq.(38) is quite interesting and worthy of further 
analysis.  First, one notes that the shear-altered, puff-center concentration, Cc',  
(i.e., at x" = y" = z" = 0) is reduced by the factor 1/f  (i.e., Cc' = Cc / f ).  Thus, 
even though shearing per se is distortional and not diffusive, the combination of 
shear in concert with diffusion leads to the reduced puff-center concentration.   
 
It is also interesting to note what has happened to the standard deviations of the 
sheared distribution (i.e., σ'x , σ'y , σ'z ) relative to the original, unsheared moments  
(i.e., σx , σy , σz ).  Actually, there can be several different interpretations of what is 
meant by the second moment.  For example, if one were to evaluate the effective 
σ'x in Eq.(38a) through the puff center, as defined by the line y" = z" = 0, simple 
inspection of Eq.(38a) would show an increased standard deviation of: 
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in agreement with the result presented by F. B. Smith (1965), and in agreement 
with along-wind diffusion parameterizations employed by Wilson (1981) and 
Hanna and Franzese (2000).  Similarly the effective σ'y through the puff center, as 
defined by the line x" = z" = 0, would yield the increased value of:   
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However, the effective σ'z through the puff center, defined by the line x" = y" = 0, 
would surprizingly yield the reduced value of:   
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How could the plume shrink in this vertical dimension as there is no shear 
stretching or enhanced diffusivity in this dimension?  The truth is that the plume 
has not physically shrunk in the z-dimension, but the fact that the diffused 
ellipsoid has been rotated away from its original principal axes means that the line 
specified by x" = y" = 0 is no longer along a major/minor axes, but rather cuts 
obliquely through the ellipsoid.  
 



310  Air Quality Modeling – Vol. III 

However, if one first integrates Eq.(38a) over the entire x"-y" plane and then re-
evaluates the vertical second moment, one would find that this projection of the 
entire distribution onto the z''-axis was indeed associated with an unchanged 
standard deviation of:  
 

 σ'z = σz .    (41a) 
 
Performing similar analyses on the integrated projections onto the x" and y" axes, 
respectively, yields standard deviations of : 
 

σx' = σx · (1 + su
2 / 3)½   and   σy' = σy · (1 + sv

2 / 3)½ .  (41b) 
 
As these standard deviations represent a full projection of the entire puff 
distribution rather than a slice through a single point (i.e., the puff center), it is not 
surprising that each of these three standard deviations are larger than the 
corresponding standard deviation presented in Eq.(40).  Thus, the moments one 
obtains are sensitive to the constraints placed upon the computational procedure, 
and more specifically, sensitive to the specific projection that is being considered.  
As a final example of this, consider Eq.(38a) on the plane z'' = 0, then integrate 
over y", and finally evaluate the variance in x".  This will lead to the exact results: 
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where the σ'y result arises from the corresponding consideration of z'' = 0, 
integration over x", and finally evaluation of the variance in y". 
    
The solution of the sheared puff problem may also be approached using Fourier 
Transforms (FT).  Recently, R. B. Smith (2005) has done a thorough analysis of 
the sheared puff solution in FT space, and obtains a general solution of the FT of 
the concentration distribution in terms of the spatial FT of the source distribution.  
Inversion of this solution via rapid inverse transform algorithms (i.e., Fast Fourier 
Transform or FFT software) provides an efficient means for evaluating 
concentration distributions as well as obtaining interesting results on the 
distribution of tracer ages within a sheared puff.  Smith also finds that the FT 
approach yields first and second concentration distribution moments in agreement 
with the earlier work of Saffman (1962).  While there is agreement between their 
estimate of the vertical standard deviation σ'z and the unchanged standard 
deviation of Eq.(41a), their estimates for the altered σ'x and σ'y are considerably 
smaller [i.e., (7/30-π/16)/2 ≈ 0.018491 versus the 1/12 ≈ 0.083333] than those 
presented in Eq.(40b).  This factor of 4.5 difference in the σ2 (i.e., a factor of 2.12 
in the σ) was also derived by F. B. Smith(1965) (see also Pasquill and Smith, 
1983) and can be understood by recognizing that Eq.(38a) is the solution for the 
unbounded puff, such that shear can be viewed as symmetric about the puff’s 
center; however, Saffman (1962) and R. B. Smith (2005) treat the case of the 
semi-bounded puff (i.e., a ground level release described by the unbounded puff 
solution above ground plus its reflection term below ground).  To compute the 
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reflection term equivalent to Eq.(38a), one must recognize that the shears, su and 
sv of Eq.(36c), flip sign in the ground reflection terms.  Thus, rather than a puff 
sheared symmetrically about its center, one has a half-puff shape sheared 
asymmetrically and subjected to net overall transport.  Intuitively, one might 
imagine that the shear sign flip in the reflection term would yield a factor-of-two 
smaller, shear-induced sigma (rather than the factor of 2.12 mentioned above); 
however, the asymmetry of this sheared, “half-puff” shape accounts for the 
deviation from a strict factor-of-two.  Note that when evaluating the standard 
deviation of this half-puff shape, one must account for the net advective 
displacement via the computational rule: variance equals mean-square minus the 
mean squared, or:  
 

    (43) ><>⋅<−>⋅<= CxCxCx /][  222σ
 

where < > denotes integration over the domain and variable (i.e., dx) of interest. 
 
Finally, returning briefly to Eq.(38), one notes that the formulation includes mean 
velocity components, u0, v0, and w0, and that the coordinates x, y, z, represent an 
arbitrary orthogonal system and do not reflect a “preferred” frame, such as used in 
plume modeling, where x is meant to imply the along-wind direction.  Thus, 
Eq.(38) can easily be adapted to a multi-time-step model where u0, v0, and w0 can 
change with each new time step.  This adaption is accomplished through the use 
of “initial sigmas” and various pseudo-times, t0, such that the t = 0 point at the 
beginning of the next time step is associated with the t = ∆t state of the Eq.(38a) 
distribution at the end of the previous time step.  Thus, Eq.(38a) can be advanced 
over many time steps with varying meteorology without needing to consider 
computationally-expensive measures such as puff-splitting.  Of course, at some 
point, the puff may become so sheared that its top and bottom are in different 
meteorological grid cells (i.e., possibly having totally different flow and 
turbulence characteristics), and, in such cases, it will be necessary to split the 
puff.  In this case, it may be most appropriate to break the single ellipsoid, 
characterizing the distribution, into two (or more) ellipsoids.  
 
3.3  Modeling of Higher Concentration Moments  
 
As far back as the mid-1980s, Sykes and co-workers at Aeronautical Research 
Associates of Princeton (ARAP) were working on developing a series of higher-
order closure based plume and puff models.  One primary feature of this approach 
is that by expanding the concentration and velocity fields into mean and 
fluctuation components, Sykes et al. (1984) were able to develop a partial 
differential equation for the mean-square concentration, <C2>.  This implies that 
one is able to predict concentration variance, σc

2 (i.e., as σc
2 = <C2> - <C>2 ), 

along with the traditional mean concentration, <C>.  The resulting puff model, 
SCIPUFF, employs second-order turbulence closure theory and solves the PDEs 
for mean and mean-squared concentration via numerical methods.  The SCIPUFF 
model has undergone refinement and evaluation for more than a decade.  Thus, 
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any attempt to fully and fairly describe SCIPUFF’s equations and features and the 
technical aspects of yet other modeling approaches to predicting higher 
concentration moments and fluctuation measures would require an additional 
chapter and will not be attempted here.  For those interested in SCIPUFF, the 
model and its extensive documentation are available online at: 
http://www.titan.com/products-services/336/download_scipuff.html . 
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