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Abstract: Lagrangian particle dispersion models are being increasingly used to simulate air 
pollution dispersion at different spatial and temporal scales and in various stability conditions. In 
this Chapter, a review of the present state of the art of Lagrangian stochastic models for the 
description of airborne dispersion in the Planetary Boundary Layer is presented. These models are 
based on the generalised Langevin equation. Their theoretical basis and relevant implementation 
aspects are reviewed, and examples of main applications are discussed. 
 
Key Words: Lagrangian air pollution modelling, Langevin equation, stochastic models, 
mesoscale dispersion, footprint analysis, long-range transport. 
 
 
1 The Lagrangian Approach (W. Physick, D. Anfossi) 
 
Basically two kinds of models are available to numerically simulate air pollution 
dispersion: Eulerian models and Lagrangian models. The main difference 
between the Eulerian and Lagrangian view is that the Eulerian reference system is 
fixed (with respect to the earth) while the Lagrangian reference system follows 
the instantaneous fluid velocity. 
 
In a Lagrangian stochastic model (LSM), also called Lagrangian Particle or 
Random Walk model, the motion of air masses or particles passively following 
the flow is studied. To simulate the presence of turbulent eddies, particle 
velocities are subject to a random forcing. Consequently, these models are of 
stochastic type. The fictitious particles (computer-particles), which represent 
pollutant gases or aerosols, are considered small enough to follow the motion of 
smallest eddies and, at the same time, big enough to contain a large number of 
molecules. Each particle is moved at each time step by transport due to mean 
wind and diffusion, related to the turbulent wind velocity fluctuations. 
 
In the single particle models considered here, the trajectory of each particle 
represents an individual statistical realisation in a turbulent flow characterised by 
certain initial conditions and physical constraints. Thus the motion of any particle 
is independent of the other particles, and consequently the concentration field 
must be interpreted as an ensemble average. The basic relationship for an 
instantaneous source located at 0x  (Csanady, 1973) is: 
 

 ( ) ),|,(  , 00 txtxPQtxC =     (1) 
 
where C  is the concentration at time t and location x , Q is the emitted mass at 
time t = 0 and P(x,t|x0,t0) is the probability that a particle that was at 0x at time 0t  
arrives at x at time t. To compute P(x,t|x0,t0) it is necessary to release a large 
number of particles, to follow their trajectories and to calculate how many of 
them arrive in a small volume surrounding x at time t. It is worth noting that 
particles move in the computational domain without any grid, using as input the 
values of the first two or three (sometimes four) moments of the probability 
density distribution (PDF) of wind velocity at the location of the particle. This 
input information comes either from measurements or from parameterisations  
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appropriate to the actual stability conditions (unstable, neutral, stable), to the type 
of site (flat or complex terrain, coast, etc.), and to the time and space scales 
considered. 
 
This review covers various aspects of LSM derivation and applications. In 
Section 2, we describe the theoretical basis of LSMs (Langevin equation, Fokker-
Plank equation, PDFs, turbulence parameterisation) and present the related 
technical information (i.e., link with meteorological models, boundary conditions, 
concentration calculation). Particular topics that can be covered within the 
framework of LSMs (plume rise, reactive chemistry and the prediction of higher 
order concentration moments) are also included. Section 3 deals with the 
application of LSMs under various conditions. 
 
 
2 Lagrangian Stochastic Models (LSMs) 
 
2.1 Historical Development (D. Anfossi) 
 
LSMs are mainly based on the generalised Langevin equation for particle 
velocity. LSMs are based on the Langevin equation for particle position also 
exist, but do not have wide use and we do not discuss them in the present review. 
Before describing this equation and discussing its details, it may be worthwhile to 
briefly recall the historical milestones of its derivation (Gardiner, 1990; Rodean, 
1996; Anfossi, 2000). The first one was the 1905 Einstein paper on the 
explanation of Brownian motion. In this paper the concept of stochastic modelling 
of natural phenomena was introduced for the first time. The main result was that 
the root-mean-square value of the displacement of the substance particles 
contained in the flow, under the assumption that successive displacements are 
independent from the previous ones, is proportional to the square root of the time 
as diffusion proceeds. Three years later in 1908, Langevin proposed an alternate 
method to explain the Brownian motion. His method was based on the derivation 
of an equation, named after him, in which it is assumed that two forces act on 
each particle: a deterministic one representing the viscous drag and a stochastic 
one accounting for the random impacts of the other molecules of the liquid. The 
original Langevin equation reads: 
 

( )tv
dt
dv µλβ  +−=      (2) 

 
where v is the velocity, t is the time, µ  is a random function, and β  and λ  are 
two constants. Obviously, in later applications to atmospheric turbulent 
dispersion, the two terms on the r.h.s. of equation (2) represent the friction force 
exerted by the flow on the particle (the deterministic term) and the accelerations 
caused by pressure fluctuations (the stochastic term). 
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Equation (2) was the first example of a stochastic differential equation. A 
complete and rigorous treatment of such class of equations was not available until 
the 1950s. In particular, when manipulating stochastic equations, it should be 
noted that ( )[ ]2tµ  is of the order dt  and so cannot be neglected in comparison 
with dt . Consequently, the usual "function of a function" derivation rule must be 
substituted by Ito's formula that prescribes that the derivative of a stochastic 
function of velocity and position ( )uxf ,  is: 
 

 ( )[ ] µ
∂
∂

∂
∂

∂
∂

∂
∂ d

u
fbdt

u
fb

u
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x
fuuxfd     , 2
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⎠

⎞
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⎝

⎛
++=   (3) 

 
where a and b are functions of x and u. 
 
The Langevin equation is a Lagrangian equation. Its corresponding Eulerian 
equation is the Fokker-Planck equation derived in the years 1915-1917. The 
diffusion equation written by Einstein in his 1905 derivation is a special case of 
the Fokker-Planck equation. Taylor (1921) considered correlated particle 
displacements and obtained the fundamental results that the mean-square value of 
the displacement is proportional to the time elapsed from the emission in the first 
phase of the diffusion process and is proportional to the square root of time for 
longer times, thus recovering, in this second limit, the Einstein result. Obukhov 
(1959) first proposed that the evolution of the motion of an air particle in the 
atmosphere be described as a Markov process. Smith (1968) assumed that the 
Lagrangian turbulent fluctuation of a given parcel velocity at time t + τ, ( )τ+tv ' , 
is related to the same quantity at time t, ( )tv ' , according to the following 
relationship: 
 

( ) ( ) ( ) ( )tvRtvtv "'' +=+ ττ     (4) 
 
in which ( )τR  is the autocorrelation coefficient at time lag τ  and ( )tv"  is a 
random velocity fluctuation, assumed independent of ( )tv ' . Both Equations (2) 
and (4) assume stationary and homogeneous turbulence. It is interesting to point 
out the relation between these two equations. The second one can be considered 
either the finite difference form of the first one (Sawford, 1985; Gifford, 1982), or 
it can be obtained by integrating the first one with respect to time (Legg and 
Raupach, 1982). On the other hand, Equation (2) can be derived from Equation 
(4) by combining the latter with its Taylor series expansion and dropping higher 
order terms (Gaffen et al., 1987; Durbin and Petterson Reif, 2001). 
 
Hanna (1979) showed, by direct comparison with atmospheric Eulerian and 
Lagrangian turbulence data, that Equation (4) is approximately valid, and 
therefore applicable, in the planetary boundary layer (PBL). 
 
Since the 1970s, many pioneering papers (e.g., Reid, 1979; Zannetti, 1981, 1984; 
Ley, 1982; Davis, 1983) have appeared in the literature aimed at simulating 
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atmospheric turbulent dispersion by means of the Langevin equation, written as 
follows: 
 

 µσ d
T

dt
T
vdv

L
v

L

2
1

'
' 2

⎟⎟
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⎞
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⎝

⎛
+−=

    
(5) 

 
or in its finite difference form (Equation 4), where LT  is the Lagrangian time 
scale and vσ  is the velocity standard deviation. Zannetti (1981, 1984), in 
particular, proposed the first model that considered all the correlations among the 
three wind components.  
 
However, it became immediately clear that Equation (5) could not be applied in 
non-homogeneous turbulence, because it leads to accumulation of particles in the 
regions where vσ  is small. This is an important point since vertical turbulence 
conditions in the PBL are never homogeneous. In neutral stability, turbulence is 
non-homogeneous but, generally, Gaussian. In convective conditions turbulence 
is neither homogeneous nor Gaussian. This problem was examined by, among 
others, Wilson et al. (1981), Legg and Raupach (1982) and Sawford (1985), who 
attributed the accumulation to a mean drift velocity induced by the gradient in 
vertical velocity variance. A proposed drift term correction to the r.h.s. of 
equation (5) for the vertical component generally had the following expression: 

( ) dtzw ww ∂∂′+ 222121 σσ . This was used with success, for instance, by 
Brusasca et al. (1989). Since then particular attention has been paid to dispersion 
in convective conditions in the literature. In these conditions, the vertical velocity 
PDF is not Gaussian due to the presence of updrafts and downdrafts, and, as a 
consequence, it is necessary to take into account at least the third order moment 
of the vertical velocity fluctuations. With relation to this problem, important 
contributions were given by the basic papers of Baerentsen and Berkowicz 
(1984), Thomson (1984), van Dop et al. (1985), and De Baas et al. (1986) 
introducing the treatment of updrafts and downdrafts, and consequently of skewed 
PDFs, into the Langevin equation, thus obtaining realistic and physically correct 
simulations of dispersion in convective conditions (see Section 2.2). The test 
database, widely used by the international community, was due to Willis and 
Deardorff (1976, 1978, 1981) who performed very skilful and comprehensive 
water tank tracer dispersion experiments. 
 
The conclusive paper, at least for the moment, defined by Rodean (1996) as a 
"classical landmark paper", was due to Thomson (1987). He demonstrated that by 
using the “well-mixed condition” (particles that are initially uniformly distributed 
in space, must remain so and they have the same velocity distribution as the fluid) 
as the criterion for selecting the correct model for the diffusion of scalars in a 
turbulent flow, the atmospheric dispersion of pollutants can be successfully 
simulated with LSMs based on a generalised form of the Langevin equation. This 
form is capable of representing skewed inhomogeneous non-stationary conditions, 
without adding any "ad hoc" drift correction term, and incorporates an exact 
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formulation of non-Gaussian turbulence. Also, unlike in previous versions of the 
Langevin equation, it is not necessary to incorporate the skewness of the 
convective boundary layer (CBL) in the random term, which remains Gaussian.  
 
2.2 Theory (E. Ferrero) 
 
LSMs are based on the Langevin equation that describes the temporal evolution 
of the velocity of pollutant particles in a turbulent field. The solution of the 
Langevin equation is a continuous stochastic Markov process. In fact, particle 
position and velocity, in a turbulent flow, can be considered a bivariate Markov 
process in the range of the turbulent energy spectrum between the Kolmogorov 
time scale τn (approximately equal to the correlation time of the accelerations) 
and the velocity correlation Lagrangian time scale TL. 
 
The Langevin equation for the turbulent velocity can be written as follows: 
 

jjiii dWtuxbdttu,xatdu ⋅+⋅=
→→→→ ),,(),()( ,    (6) 

 
and is coupled to the equation for the position x(t): 
 

( ) ( ) dttutdx ii ⋅=      (7) 
 

where 
→
Wd  is an incremental Wiener process that is Gaussian with zero mean and 

variance of: 
 

( ) ( ) ( ) ''' dtdttttdWtdW ijji ⋅⋅−=⋅ δδ  
 
where the notation < > represents an ensemble average. 
 

The term ⋅
→→ ),,(, tuxb ji can be derived from the Kolmogorov theory of local 

isotropy in the inertial sub-range (Monin and Yaglom, 1975). This theory is based 
on similarity relations valid in a particular interval of the turbulence spectrum. 
The energy is transferred from the larger vortices to the smaller ones, the smallest 
scales of the atmospheric turbulence, where it is dissipated by the viscosity. Inside 
this energetic cascade, there is a part of the spectrum where the vortices are 
sufficiently small so that they are not affected by the anisotropy induced from the 
larger vortices and are not dissipated as heat. This part of the turbulent spectrum 
is called the inertial sub-range. This interval coincides with the interval of 
temporal scales in which the turbulent velocities can be considered a Markov 
process. 
 

dWuxbdtuxatdu ⋅+⋅= ),(),()(

( ) ( ) dttutdx ⋅=
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By defining the structure function of the Lagrangian velocities, in one dimension, 
as: 
 

( ) ( )( ) 22 )(tdudttutuD iii =+−=    (8) 

 
then (if τn ≤ dt ≤ TL), the following relationship can be considered: 
 

dtCD ⋅⋅= ε0  
 
where ε is the dissipation rate of turbulent kinetic energy and C0 is a universal 
constant. 
 
Substituting dui(t), as given by the Langevin equation in (8), averaging and 
considering only the terms of the order of dt, leads to: 
 

dtCdtbdWbduD ijijiiji ⋅⋅==⋅== εδ 0
2222  

 
and 
 

εδ ⋅= 0Cb ijij     (9) 
 
An Eulerian description of a continuous Markov process is available through the 
Fokker-Planck equation. If the position and turbulent velocity can be considered a 
continuous stochastic Markov process, the Fokker-Planck equation can be used to 

calculate the coefficient →a  of the Langevin equation for any given probability 
density function (PDF) (Gardiner, 1990). 
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where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →→ tuxP ,,  is the Eulerian PDF of the particles. 

 

In the stationary case, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →→ tuxP ,,  does not depend on time and the Fokker-Planck 

equation reduces to: 

tCD ∆⋅⋅= ε0
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where ijb  is given by (9). 
 
Following Thomson (1987), it can be stated that a LSM satisfies the well-mixed 
condition (if the particles are initially well-mixed in the fluid, they will remain 

so), if ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →→ uxP ,  is equal to the Eulerian atmospheric PDF. This is a necessary and 

sufficient condition. In other words all moments of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ →→ uxP ,  must equal the 

measured or parameterised moments. 
 
In one dimension, the Fokker-Planck equation can be solved and the term a(x,u) 
calculated, for a given PDF, as follows (Thomson, 1987): 
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and 

∞→→ uper0φ  
 
In addition (Hinze, 1975; Tennekes, 1982; Rodean, 1994; Luhar and Britter, 
1989; Weil, 1990; Reynolds, 1998),  
 

LT
C 2

0

2
σε

=      (13) 

 
LSMs usually are one-dimensional models solving one or two and, in some cases, 
three Langevin equations, one for each Cartesian direction. The extension to a 
fully three dimensional model was addressed by Sawford and Guest (1988), 
Sawford (1993) and Borgas and Sawford (1994). It can be demonstrated that a 
unique solution for the Fokker-Planck equation, in the three-dimensional case, 
exists only for homogeneous, isotropic turbulence (Borgas and Sawford, 1994). 
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The non-uniqueness of the 2D and 3D solution is related to the first term on the 
right side of (10), as this equation can be satisfied by any vector obtained through 
adding a rotational vector, in →u  space, to →a P (Sawford, 1993; Rotach et al., 
1996). 
 
Concerning the value of the basic constant C0, different values can be found in the 
literature, mainly ranging from about 2 to 4 (Luhar and Britter, 1989; Hurley and 
Physick, 1991, 1993; Physick et al., 1994; Tassone et al., 1994; Rotach et al., 
1996; Degrazia and Anfossi, 1998). Sawford (1991) showed that C0 is a function 
of the Reynolds number based on the Eulerian Taylor microscale, Reλ. C0 reaches 
an asymptotic value, C0 = 7, for growing Reλ. The variability in the value of this 
constant was discussed by Du (1997), who suggested that it can be related to the 
method used for estimating C0 and proposed the value 3.0 ± 0.5 for using in 
Lagrangian Stochastic models in neutral conditions. Reynolds (1998) 
demonstrated that the value 5.0 ± 0.5 gives satisfactory results in simulating a 
wind tunnel boundary layer and suggested that one-dimensional Lagrangian 
stochastic models are inconsistent with the supposed universality of C0. Anfossi et 
al. (2000), by analysing turbulence observations made in the surface layer, under 
unstable conditions by a sonic anemometer, found C0 = 4.3 for the crosswind and 
vertical turbulent velocity components and C0 = 3.2 for the longitudinal one. 
According to these authors, the partitioning of C0 in different spatial components 
is a consequence of the directional dependence of the Eulerian correlation 
functions due to the local isotropy in the inertial sub-range. 
 
Stohl and Thomson (1999) stressed the effects of the density variation in the 
boundary layer and proposed a density correction term. They also demonstrated 
that this term influences the surface concentration. 
 
The theory of this section is applicable to one-particle models, and these have 
been widely tested and applied to many different situations characterised by non-
homogeneous turbulence and different stability conditions (see section 2.10). 
However, it should be stressed that a one-particle model is only able to describe 
the absolute dispersion and to predict the mean concentration fields. When one is 
interested in the relative dispersion and mean-square concentration field, a two-
particle model should be developed and applied (Durbin, 1980), although recently 
one-particle Lagrangian models have been used in conjunction with the 
meandering plume approach of Gifford (1959) to determine higher order 
concentration fluctuation statistics for practical applications (Section 20). In the 
two-particle case, the assumption of Markovian and continuous process should be 
made jointly for the positions and velocities of the particles pair (Thomson, 1990; 
Sawford, 1993; Borgas and Sawford, 1994). An important advantage of the two-
particle model is the ability to include second order chemical reaction (Crone et 
al. 1999). Unfortunately, in the case of the two-particle model, a unique solution 
of the Fokker-Planck equation does not exist even in isotropic turbulence in the 
fully three-dimensional case (Sawford, 1993). 
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A hybrid LSM, referred to as the PARTPUFF (Hurley, 1994), was designed to 
save computer time for high horizontal-resolution simulations. This model 
employs the LSM approach in the vertical direction, and a Gaussian puff 
approach in the horizontal directions. This method allows a particle/puff to 
influence more than one horizontal grid-point, enabling a reduction in the number 
of particles needed in a simulation. A related approach in which puffs and 
particles are combined is described by De Haan and Rotach (1998). 
 
2.3 Choice of Eulerian PDF (E. Ferrero, D. Anfossi, M. Hibberd) 
 
The main input of physical data to LSMs is through the PDF of Eulerian turbulent 
velocities (see Equation [10]), the form of which depends on the prevailing 
turbulence characteristics. If this PDF is Gaussian, it can be fully described by the 
mean and standard deviation, otherwise higher order moments are also needed. 
For actual atmospheric PDFs, their non-Gaussian form can usually be described 
sufficiently and accurately by adding moments up to third or fourth order. 
 
Since most LSM applications concern vertical dispersion in the convective 
boundary layer (CBL), we will mainly focus on this kind of dispersion. In 
convective conditions the vertical velocity PDF is asymmetric and, as a 
consequence, to correctly describe dispersion, it is necessary to prescribe an 
analytical expression for the PDF based on the measured higher order moments of 
Eulerian vertical velocity fluctuations. 
 
In this section we present PDFs that are most commonly used in LSMs: Gaussian, 
bi-Gaussian and Gram-Charlier. The various closure schemes used with the bi-
Gaussian PDF form are described. Advantages of analytical solutions and 
approaches other than closure (such as using a quadratic form for the acceleration 
term in the stochastic equation) are discussed. 
 
2.3.1 Gaussian PDF 
 
In homogeneous turbulence the PDF of velocity fluctuations is assumed to be 
Gaussian. This assumption may also be made for inhomogeneous Gaussian 
turbulence, which, for example, is a good first approximation for the neutral PBL. 
This choice implies that the generalised Langevin equation (see Equation [6]) in 
inhomogeneous conditions, without the Reynolds stress terms, reduces to the 
following form for each component (Rodean, 1996): 
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This equation was first proposed by Wilson et al. (1983) and rigorously derived 
by Thomson (1987). Inhomogeneous turbulence equation (14) further reduces to: 
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This equation is identical to Equation (5). 
 
2.3.2 Bi-Gaussian PDF 
 
Pearson (1894) was the first to suggest the use of linear combinations of normal 
distributions for fitting observed frequency distributions having a non-Gaussian 
shape, for example 
 

( ) ( ) ( )BBBAaA wPBwPAzwP σσ ,,, ⋅+⋅=                           (16) 
 
where A + B = 1, A > 0 , B > 0 and AP  and BP  are Gaussian PDFs with means Aw  
and Bw , and standard deviations Aσ  and Bσ .  
 
Baerentsen and Berkowicz (1984) first introduced this PDF into LSMs, where the 
Gaussian PDFs have the form 
 

( )[ ] ( ) ( )[ ]22121 2exp2 AAAA wwP σσπ −−=
−

                       (17) 
 
and similarly for PB. (Note that there is a potential for confusion when using 
equations given in the literature because some authors use absolute values of the 
means in the PDF expressions rather than their assigned values.) The values of the 
parameters (A, B; Aw , Bw ; Aσ , Bσ ) are obtained from the definition of the 
moments of the distribution: 
 

( ) ( )∫ ∫
+∞

∞−

+∞

∞−

⋅⋅⋅+⋅⋅⋅= dwzwPwBdwzwPwAw B
n

A
nn ,,                (18) 

 
where nw  are the measured or parameterised moments of the atmospheric PDF. 
In principle, the six unknowns can be determined by solving the zeroth to fifth 
order moment equations. However, the absence of data for the highest moments 
makes it more practical to use just the first few moments and to make some 
closure assumption. Writing out Equation (18) for the first four moments leads to 
the following system of equations: 
 
 1=+ BA  
 
 0==+ wBwAw BA  
 

( ) ( ) 22222 wwBwA BBAA =+++ σσ                              (19) 
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 ( ) ( ) 32323 33 wwwBwwA BBBAAA =+++ σσ   
 
 ( ) ( ) 442244224 3636 wwwBwwA BBBBAAAA =+++++ σσσσ  
 
Baerentsen and Berkowicz (1984) considered the first three moments and used the 
closure assumption 
 

BBAA ww == σσ     (20) 
 
to solve for the parameters: 
 

 
( ) ( )

2

32233

4
8

w
wwwwB

⋅

⋅+−
= ,  BA www 22−=  , 

 

 
AB

B

ww
wA
−

= ,  AB −= 1     (21) 

 
This system of equations has probably been the most widely employed of the 
closures described here, although some of the other closures give better results. 
Using the closure in Equation (20) with equation (16) for the PDF in the Fokker-
Planck equation (Equations [10] and [12]), Luhar and Britter (1989) obtained an 
explicit expression for Φ . The general expression for Φ  in their model is: 
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(22) 

 
where erf(z), the error function, is defined as: 
 

 
( ) ( )∫ ⋅−⋅=

z
dsszerf

0

exp2
π

 

 
and any closure assumption can be substituted in Equation (22).  
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Weil (1990) generalised the Baerentsen and Berkowicz (1984) closure assumption 
to: 
 

 AA wR  =σ      and      BB wR  =σ ,    (23) 
 
and obtained solutions: 
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where: 

   
( )2

3
2

3

w

wS = ,  2

2

31
1

R
R

+
+

=α   and  21 R+=β  

 
S is the skewness. Weil used a value of R = 3/2. The Eulerian PDF generated 
using this closure assumption has been found to lead to good agreement with 
point source dispersion results in the CBL and is recommended over the 
Baerentsen and Berkowicz (1984) form (Luhar at al., 1996). 
 
Du et al. (1994) considered all four moments listed in Equations (19) with A = 0.4 

and assumed the Gaussian value of 3 for the kurtosis K ⎟
⎠
⎞⎜

⎝
⎛=

224 ww : 
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 ( )24 3 ww =      (25) 
 
They obtained 
 

 ( ) 3
1

3wwA = , ( ) 3
1

3

3
2 wwB −=  

  (26) 

 ( ) 2
1

3
2

32 280.0 ⎥⎦
⎤

⎢⎣
⎡ −= wwAσ ,   ( ) 2

1
3

2
32 927.0 ⎥⎦

⎤
⎢⎣
⎡ −= wwBσ  

 
Equations (26) yield real solutions for S ≤ 1.12.  
 
Another closure for the bi-Gaussian PDF that includes up to the fourth moment 
was proposed by Anfossi et al. (1996). They suggested two different closures 
without assuming any a priori value for 4w . The first closure assumed 

σσσ == BA  and the second closure set A = B = ½. Both PDFs had restrictions 
on the range of skewness S and kurtosis K to ensure real solutions were obtained. 
A comparison among different closures performed by Ferrero et al. (1998b) in 
CBL dispersion showed that these closures perform as well as the one by Du et al. 
(1994) but generally less well than the one by Baerentsen and Berkowicz (1984) 
and the Gram Charlier method (described below). 
 
The closure assumptions considered so far are not well behaved as the skewness 
approaches zero, i.e., they do not collapse to a simple Gaussian PDF. In order to 
overcome this problem, Luhar et al. (1996) proposed a more generalised form of 
Weil’s (1990) closure, based on the skewness value S:  
 

 ( ) 3
1

 32     ,         ,   Smmwmw BBAA =−== σσ   (27) 
 
This has the correct property that the bi-Gaussian PDF collapses to a Gaussian 
PDF in the zero skewness limit and so can be used to investigate the influence of 
skewness on dispersion in the CBL. It gives the following values for the 
parameters 
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where 
 

 ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +⎥⎦

⎤
⎢⎣
⎡ += 222232 31 mmSmr  

 
and the kurtosis is given by  
 
 ( )( ) ( )2242 1631 mmmrK ++++=  
 
Luhar et al. (1996) reported that the 2/3 constant in Equation (27) was chosen to 
best match the observed values for the higher moments of S = 0.8 and K = 3.9 in 
most of the CBL. Comparison with laboratory experiments of Hibberd and 
Sawford (1994) showed that this closure produced similar CBL dispersion results 
to those obtained with the Weil (1990) closure, and better than those of 
Baerentsen and Berkowicz (1984) and Du et al. (1994).  
 
The model of Rotach et al. (1996) has also the property that it has a skewed PDF 
for convective conditions and is “well behaved” in the Gaussian limit. As an 
additional advantage it is more than one-dimensional (i.e., it includes the effect of 
velocity covariances). 
 
Wilson and Flesch (1993) warn of the risk of numerical underflows/overflows 
with all these models when evaluating the tails of the exponential distributions; 
use of double precision and sufficiently small timesteps is recommended. 
 
2.3.3 Gram-Charlier PDF 
 
Most of the closures described so far are based on the idea that A and B in 
Equation (14) may be associated with the fractions of the area occupied by 
updrafts and downdrafts, Aw  and Bw  with the mean updraft and downdraft 
velocities, and Aσ  and Bσ with the corresponding variances of the vertical 
velocity fluctuations. However, De Baas et al. (1986) and Anfossi et al. (1996) 
note that all these PDFs are just mathematical approximations. It is not necessary 
that the parameters in the model be directly related to physical quantities. In all 
cases, it is just the moments of the PDFs that are derived from experimental data.  
 
An alternative form of the PDF proposed by Anfossi et al. (1996) and Ferrero and 
Anfossi (1998a, b) on the basis of these considerations is the Gram-Charlier PDF. 
This PDF, truncated to fourth order (GC4), has the following form (Kendall and 
Stuart, 1977): 
 

 ( ) ( )4433

2

1
2

,
2

HCHCezxP
x

++=
−

π
   (29) 
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where 3H  and 4H  are Hermite polynomials and 3C  and 4C  are their 
coefficients, whose expressions are:  
 

 xxH 33
3 −=  36 24

4 +−= xxH     
  (30) 

 6 3
3 µ=C  ( ) 2434

4 −= µC     
 
and 3µ , 4µ  are the standardised moments of w and wwx σ= . Solving Equation 
(12) in which P is given by Equation (29), the following expressions are found: 
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where 
 

 ( ) 5
4

4
3

3
4

2
3431 1061153 xCxCxCxCCxCT −−+++−−=    

 

 ( ) 6
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4
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3
34

2
42 5211 xCxCxCxCCxCT ++−−++−=  (33) 
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4
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3
2

4343 6331 xCxCxCxCCT ++−−+=     
 
We note that a Gram-Charlier distribution truncated to third order (GC3) can be 
derived from Equations (33) simply by setting 04 =C . If 3C  is also set to zero, 
Equation (29) reduces to the Gaussian PDF. Thus, this PDF also has the correct 
property of collapsing to a Gaussian PDF when the skewness is equal to zero. 
 
Gram-Charlier series expansions, though showing good correspondence to 
experiments (e.g., Frenkiel and Klebanoff, 1967; Antonia and Atkinson, 1973; 
Durst et al., 1992; Anfossi et al., 1996) can exhibit small negative probabilities in 
the tails of the distribution (Frenkiel and Klebanoff, 1967; Flesch and Wilson, 
1992; Du et al., 1994; Anfossi et al., 1996). Numerical experiments (Ferrero and 
Anfossi, 1998b) showed that discarding these non-physical probabilities is 
inconsequential in practical applications because these unrealistic velocities occur 
so rarely. 
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Advantages of the Gram-Charlier (GC) PDFs are their computational efficiency 
and the ability to include information on the Eulerian moments directly. The GC 
form also provides greater flexibility in choosing the shape of the PDF to match 
observations. It has been shown to give good results both in the atmospheric 
surface layer (Anfossi et al., 1996) and for all stabilities in PBL dispersion 
(Ferrero and Anfossi, 1998b; Tinarelli et al., 2000). 
 
An alternative way of using the GC PDF was proposed by Tassone et al. (1994). 
They assumed that the variance of the Gaussian distribution included in the GC 
PDF (see equation 29) is proportional to, rather than equal to, the second moment 
of vertical velocity distribution (included in the Hermite polynomials): 

( ) 22    wzfw =σ , where the value of f is determined empirically. By comparing this 
closure to the Willis and Deardorff (1981) water tank experiments, Vinter Falk 
(1998) found that the position and size of the ground level concentration peak 
were well predicted but the right side (positive velocities) of the PDF could 
present a pronounced non-physical dive in the plume centreline. 
 
2.3.4 Quadratic Form for the Acceleration Term 
 
Franzese et al. (1999) adopted a different approach and assumed that the 
deterministic acceleration term in the stochastic differential equation can be 
parameterised as a quadratic function of velocity: 
 

 ( ) ( ) ( ) ( )zwzwzzwa γβα ++= 2,    (34) 
 
The coefficients are assumed to be height dependent. Their values are determined 
from the first four moments of the Eulerian velocities with integration of the 
Fokker-Planck equation. 
 
The main advantage of this approach is its computational efficiency. Tests 
showed that model run times were reduced to a quarter of those for the Luhar and 
Britter (1989) model. A further advantage is that moments up to fourth order can 
be used without any predefined form for the PDF. However, the skewness cannot 
exceed a value of about 0.6, otherwise the model does not produce a vertically 
well-mixed concentration distribution at large times. This is probably due to the 
inadequacy of the first few moments for fully describing the physical PDF 
(Borgas, pers. comm.). In fact, all the methods discussed in this section are 
approximations to physical PDFs and may fail to properly describe dispersion in 
particular circumstances. 
 
2.4 Turbulence Parameterisation (G. Degrazia) 
 
A turbulence parameterisation is an approximation to nature in the sense that we 
are putting in physical models an approximated relation that in principle can be 
used as a surrogate for the natural true unknown term. The reliability of each 
model strongly depends on the way turbulent parameters are calculated and 
related to the current understanding of the PBL. Most of the turbulence 
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parameterisations used in advanced dispersion models are based on PBL 
similarity theories (Hanna, 1982; Stull, 1988; Holtslag and Moeng, 1991; Kaimal 
and Finnigan, 1994; Sun, 1993; Rodean, 1994). 
 
Through classical statistical diffusion theory (Batchelor, 1949), it is possible to 
relate turbulent parameters (wind velocity standard deviations iσ  ( wvui ,,= ) and 
Lagrangian decorrelation time scales LiT ) to spectral distribution of turbulent 
kinetic energy (TKE). Following this approach, Hanna (1982) and Degrazia et al. 
(2000) developed expressions for the Lagrangian decorrelation time scales based 
on the peak wavelength of the turbulent velocity spectra. These two 
parameterisations that can be used in Lagrangian stochastic dispersion models are 
presented here. Parameterisations for the third order moments for the vertical 
velocity (w3 ) and the dissipation rate (ε) are also presented. 
 
2.4.1 Hanna’s Parameterisation 
 
Based on analyses of field experiments (Hanna, 1968; Kaimal et al., 1976, 1982; 
Caughey, 1979; Hanna, 1981), theoretical considerations (Panofsky et al., 1977; 
Irwin, 1979a) and second-order closure model (Wyngaard et al., 1974), Hanna 
(1982) proposed the following parameterisations: 
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in the stable case: 
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and in the neutral case: 
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where 0)( ∗u  is the surface friction velocity; iz  is the Convective Boundary Layer 
(CBL) height; z  is the height above the surface; L is the Monin-Obukhov length; 

∗w  is the convective velocity scale; oz  is the aerodynamic roughness; h  is the 
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height of the turbulent stable boundary layer and cf  is the Coriolis parameter 

( 1410 −−= sfc  in mid-latitudes). 
 
2.4.2 Degrazia et al. Parameterisation 
 
Degrazia et al. (2000) parameterisation is based on Taylor’s statistical diffusion 
theory, in which the shear buoyancy PBL spectra are modelled by means of a 
linear combination of the convective and mechanical turbulent energy. In this 
parameterisation, the buoyant and mechanical wind turbulent velocity variances 
( )2

is
2
ib ,σσ  are given by the following expressions: 
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On the other hand, the Lagrangian decorrelation time scale assumes the following 
expression: 
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where izL−  is an average stability parameter for the convective PBL, in which a 

typical value 01.0=− izL  will be used and 32)2)(05.05.0( −±= πκα iic  with 
κ = 0 4.  and 3/4,3/4,1   i =α  for vu,  and w  components, respectively (Sorbjan, 
1989). 
 
To construct the wind velocity variances and Lagrangian decorrelation time scales 
from Equations (48), (49) and (50) for PBL Lagrangian dispersion models, it is 
necessary to have expressions for c

im
sn fuw )( , , , , ∗+

∗∗ εε φψ  and sn
imf +∗ )( . 
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For a convective PBL, 75.0)( 32 ≈εψ  (Wilson, 1997), 31
0 )/()( Lzuw i κ−= ∗∗  

and, recalling that im
c
im zf )/()( λ=∗  and that im )(λ  is the peak wavelength of 

the turbulent velocity spectra, c
imf )( ∗  expressions for wvui ,,=  can be derived. 

According to Kaimal et al. (1976), Caughey (1982) and Degrazia and Anfossi 
(1998) 
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so that 
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For a neutral or stable PBL sn+

εφ  can be written (Sorbjan, 1989) as 
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εε φφ , where 25.1=n

εφ  and )215.1()/1( αα −−=Λ hzL  is the 
local Monin-Obukhov length. For a shear dominated stable boundary layer, 

5.11 =α  and 0.12 =α . Furthermore, for a neutral or stable PBL, 
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∗∗ −= hzuu  in which 7.11 =α  for the neutral case (Wyngaard et al., 

1974). Then, following Stull (1988) and Sorbjan (1989), and by considering 
03.0/)( 0 =∗ Gu  (Hanna, 1982) it follows that: 
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where n

ismf )(  is the frequency of the spectral peak in the surface for neutral 
conditions, G  is the geostrophic wind speed and 1410 −−= sf c  is the Coriolis 

parameter. According to Sorbjan (1989), 045.0)( =n
usmf , 16.0)( =n

vsmf  and 

33.0)( =n
wsmf . Furthermore, 500=wa  (Hanna, 1968; Hanna, 1981) as a 

consequence of the Blackadar mixing length hypothesis (i.e., the asymptotic 
length scale cfGl /≈∞  is limited by a constant value, equal for all the 
components), we found 3889=ua  and 1094=va . 
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2.4.3 Formulas for w3  in the CBL 
 
In a CBL with non-divergent horizontal flow, the vertical velocity has a zero 
mean value but a strongly negative mode (the most frequent value of the vertical 
velocity). This indicates that within the CBL (except in shallow layers near the 
ground and in the capping inversion base), the probability density of the vertical 
velocity fluctuations has a positive skewness. In the present subsection we present 
four expressions for the vertical profile of the third moment of the vertical 
velocity in a CBL, suggested by Rotach et al. (1996), Weil (1990), Luhar and 
Britter (1989) and De Baas et al. (1986), respectively. These formulations for the 
third moment of the vertical wind velocity fluctuations are the following: 
 

i) Rotach et al. (1996) 
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ii) De Baas et al. (1986) 
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iii) Luhar and Britter (1989) 
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iv) Weil (1990) 
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2.4.4 Formulas for ε 
 
Many expressions for the dissipation rate ε can be found in the literature. Among 
them the following are reported. 
 
In convective conditions (Weil, 1994): 
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In stable conditions, PBL is generally rather shallow and consequently can be 
modelled with near surface layer scaling (Kerschgens et al., 2000). According to 
Kaimal and Finnigan (1994) ε can be estimated by 
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Alternatively, ε can be obtained by equation (13). 
 
2.4.5 Additional Parameterisations 
 
One problem with the use of LSMs for real situations is that the technique is 
computationally expensive, although this is becoming less of a problem with the 
availability of faster computers. This problem was overcome to a large extent by 
Hurley and Physick (1993a, b), by using a homogeneous, skewed form of the 
Langevin equation and associated turbulence parameterisations, 
 

*,,*,,, /6.06.0 wzTw iLwLvLuwvu ==σ    (62) 
 
that agrees with observations in the middle 80% of the CBL. This approach 
reduced the number of terms to be calculated in the Langevin equation and 
enabled a much larger timestep to be used. By comparing results to the Willis and 
Deardorff (1976, 1978, 1980, 1983, 1987) and Deardorff and Willis (1982) 
experiments, they showed this simplified model could reproduce the important 
aspects of the experiments for CBL dispersion, and plume rise and entrapment, 
while decreasing the computational expense by an order of magnitude. 
 
More recently, Nasstrom and Ermak (1999a, b) developed a model for dispersion 
in skewed homogeneous turbulent flow using a form of the Langevin equation 
that has a linear (in velocity) deterministic acceleration term and a non-Gaussian 
process for the random acceleration term. This model contrasts with that of 
Hurley and Physick, which incorporated a non-linear deterministic term and a 
Gaussian random term, following the findings of Thomson (1987). Although both 
models are able to accurately simulate the (w, z) phase space trajectory of a particle, the 
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advantage of the Nasstrom and Ermak model is that it is able to use a time step 
that is four times larger than that of the non-linear-Gaussian model. 
 
The problem of reducing the computer time, maintaining the physical correctness 
(i.e., the well mixed condition) was also dealt with by Tinarelli et al. (2000), who 
adopted a variable time step t∆ . For a correct numerical integration of the 
Langevin equations, the time step must be a small fraction of the smaller 
Lagrangian time scales ( zyx ,, τττ ). The latter attain small values near the 
boundaries of the atmospheric boundary layer (ABL) and much larger values in 
the main part of the ABL. Thus using a constant, and therefore very small, time 
step leads to unnecessarily long computer times. Following a suggestion of 
Wilson and Flesch (1993), these authors introduced three “vertical inhomogeneity 
time scales” defined as follows: 
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where f, in turn, is 2w , 3w  and the three Lagrangian time scales iτ . They also 
chose t∆  as a small fraction ( 101,51 ) of the minimum time scale among 

zyx ,, τττ  and the three fτ . 
 
In the following Section, the wider range of turbulence parameterisations 
available to an LSM when linked to a meteorological model is discussed. 
 
2.5 Link with Meteorological Models (W.L. Physick, S. Trini Castelli) 
 
To assess the physics of transport and diffusion of pollutants, it is necessary to 
provide a description of the meteorological processes in the atmosphere, where 
the main parameters associated with dispersion problems are the mean wind field, 
turbulence, surface-layer parameters and the height of the atmospheric boundary 
layer. In the case of LSMs, the mean wind transport of marked particles can be 
derived from observations or from diagnostic and prognostic meteorological 
models. The turbulence fields for the diffusion can be obtained by combining 
similarity theory with empirical parameterizations (Section 2.4) or can be 
transferred directly from a meteorological model when that model’s turbulence is 
predicted using a turbulent kinetic energy scheme. 
 
In section 2.2, it was shown that the correct general form of the Langevin 
equation is 
 

dWCadtwd 2
1

0 )( ε+=′     (64) 
 
where ai is a function of moments of the turbulent velocity distribution and ε is 
the eddy dissipation rate. In Gaussian turbulence, only the second-order moment 
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(the variance) is needed, whereas for non-Gaussian turbulence (e.g. convective 
boundary layer turbulence) the third and sometimes fourth-order moments must 
be specified (see Section 2.3). Here we discuss how these variables are obtained 
when a LSM is linked to a meteorological model. 
 
When a diagnostic wind model (discussed in Chapter 5) or wind observations 
provide the meteorology for a LSM, the mean winds are used to transport 
particles, but the necessary turbulence parameters (dissipation rate and moments) 
must be specified in the LSM using formulations such as those discussed in 
Section 2.4. These schemes are written in terms of Lagrangian de-correlation 
timescale TLi rather than the eddy dissipation rate, but for the vertical component, 
the two variables are often linked via the relation 
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(see equation 13). Meteorological parameters needed by formulations such as 
those of Hanna and Degrazia et al. in the previous Section include zi, L, w*, z0, 
and u*. These are difficult to estimate if only wind data are available, but methods 
such as those proposed by van Ulden and Holtslag (1985) can be used to estimate 
these parameters from routinely available meteorological measurements. 
 
When the winds from a prognostic meteorological model are used to drive a 
LSM, then a meteorological pre-processor prepares these parameter values from 
the output of the prognostic model. This way there is consistency between the 
winds and turbulence parameters used in the LSM. For example, in the RMS 
modelling system, the meteorological model RAMS (Pielke et al., 1992) and the 
Lagrangian stochastic particle model SPRAY (Tinarelli et al., 1994, Tinarelli et 
al., 2000) interface through the pre-processing code MIRS (Trini Castelli and 
Anfossi, 1997, Trini Castelli, 2000). MIRS processes the meteorological fields 
produced by RAMS (or alternatively, data fields derived from observations or 
diagnostic models) and prepares the meteorological file as input to SPRAY.  
 
Pre-processors can offer a number of options to calculate the atmospheric 
boundary layer parameters, especially the height of the boundary layer. Several 
approaches for estimating the latter in convective conditions are proposed in the 
literature. For instance, MIRS includes the Gryning and Batchvarova (1990) 
simplified model and its complete version, Batchvarova and Gryning (1991), the 
gradient Richardson number profile method, where the ABL inversion layer is 
identified by the height where Ri  overtakes a critical value cRi  (Maryon and 
Buckland, 1994, McNider and Pielke, 1981), and the diffusion coefficient profile 
method. The latter detects the inversion layer height by considering 
discontinuities in the diffusion coefficient profile and is limited to diurnal 
simulation. In particular meteorological conditions a constant ABL height can 
sometimes be assumed over the entire domain (e.g. Kalthoff et al., 1998). The 
Deardoff (1974) boundary layer height is often employed for neutral conditions 
while the stable boundary layer height is usually estimated by the Zilitinkevich 
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(1972) formulation. Estimation of a boundary layer height in stable conditions is 
often difficult, and this can be avoided by using an expression for σw involving 
the local Richardson number (McNider et al., 1988). 
 
However a value for zi is only needed when schemes such as those of Hanna or 
Degrazia et al. are employed in a LSM to describe the turbulence, or to define the 
upper boundary of the diffusive volume, permeable or impermeable, in the LSM. 
When a prognostic meteorological model with a turbulent kinetic energy (TKE) 
boundary-layer scheme provides the fields for a LSM, the dissipation rate and 
moments needed by Equation (64) can be calculated from the meteorological 
model’s TKE fields. Using TKE profiles avoid further parameterisation (meaning 
'simplification') of the ABL structure, although some TKE schemes do not predict 
ε, necessitating a parameterisation in terms of the TKE. A disadvantage can occur 
at nighttime when TKE values, and hence variances, can be so low that an 
arbitrary lower limit needs to be set in order to simulate realistic diffusion. An 
evaluation of ten TKE schemes, including tracer experiments was carried out by 
Hurley (1997), while examples of coupled meteorological and Lagrangian 
stochastic models using TKE boundary-layer formulations can be found in 
Yamada (1985), Tremback et al. (1993), Uliasz (1994), Hurley (1999) and Ferrero 
et al. (2000a). The latter two use third- and fourth-order moments for the 
convective boundary layer. 
 
Two different approaches to interface the meteorological and the dispersion 
model are used: online when the particle model is run at the same time as the 
meteorological model; and offline, when the particle model is run from the stored 
output (usually at hourly intervals) of a meteorological simulation carried out 
previously. The online approach has the advantage of proposing an integrated 
modelling system and of providing a contemporary run-time meteorological and 
dispersive scenario. This way, the dispersion model results are able to affect the 
meteorology (e.g., aerosol levels can affect radiation calculations). In the case of 
the offline approach, the advantage is the independence of the two models and the 
consequent flexibility, so that different configurations for the dispersion 
description can be set and tested without having to re-run the meteorology each 
time. A disadvantage of running a dispersion model offline is that it is possible to 
introduce large errors in the trajectories of particles in regions of rapidly changing 
winds, such as coastal areas. The vast majority of air quality models, including 
those referred to in this section, are run in offline mode, apart from the model 
TAPM (Hurley, 1999; Hurley et al., 2001), which uses an integrated approach 
that also allows for specification of the emissions as a function of the 
meteorology. 
 
2.6 Boundary Conditions (W.L. Physick) 
 
At the lateral and upper boundaries of a two- or three-dimensional LSM, particles 
are usually allowed to pass out of the modelling domain and are no longer 
tracked. However at the lower boundary, and in those models where the upper 
boundary is considered to be rigid (e.g., a model of the convective boundary 
layer, CBL), a condition is needed for a particle impinging on a boundary. A more 



11   Lagrangian Particle Models 119 

 

complex condition is necessary when deposition is being simulated and particles 
are specified to lose a fraction of their mass at the rigid boundaries (see section 
2.9). A further situation addressed in this sub-section is the correct formulation to 
allow exchange of particles across an interface with a discontinuity in turbulence 
properties. 
 
2.6.1 Upper and Lower Boundary Conditions 
 
The mathematical boundary condition on turbulent vertical velocity that is 
commonly applied at the upper and lower boundaries of a LSM is that of perfect 
reflection, i.e., a particle impinging on a boundary leaves the boundary in the 
opposite direction but at the same speed. This condition is appropriate for 
Gaussian turbulence or skewed inhomogeneous turbulence (where the Lagrangian 
time scale is normally very small near the boundaries), but if used for skewed 
homogeneous turbulence, it will lead to an accumulation or deficit of particles at 
the boundaries. Modifications of the perfect reflection condition for non-zero 
skewness by Weil (1990) and Hurley and Physick (1993a) were shown by 
Thomson and Montgomery (1994) (TM) to provide acceptable solutions for small 
values of the Lagrangian time-scale τ, but the departure from a uniformly-mixed 
profile became greater as τ increased. Considering now only the lower boundary, 
TM proposed that a correct boundary condition is 
 

( ) ( )dwzwwPdwzwwP b

iw

Eb
rw

E ,, ∫∫
∞−

∞

=     (66) 

 
where wr is the reflected velocity, wi is the incident velocity and PE is the assumed 
vertical velocity distribution of particles at the boundary zb (a corresponding 
equation can be derived for the upper boundary). The basis of this equation was 
their assertion that the relevant quantity to be considered is the PDF of the 
velocities of particles which leave zb during a fixed time interval, rather than just 
the PDF of particles leaving the boundary at a particular time t, 

dwzwPzwP bEbE ∫
∞

0
),(/),(  (w≥0), as used by Weil (1990). The former PDF is 
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∞

∫  (w≥0) since more of the faster-moving particles 

will leave z = zb in a given time interval. 
 
Knowing the incident velocity wi of a particle, equation (66) is used to obtain wr. 
When PE is the commonly-used bi-Gaussian expression for skewed convective 
turbulence (equations 16 and 17), the solution to equation (66) consists of 
numerical integrals and error functions and is obtained for each particle from 
prepared look-up tables (TM). The time-consuming nature of this process in a 
three-dimensional Lagrangian stochastic model has been addressed by Anfossi et 
al. (1997) who proposed two approximate analytical solutions to equation (66).  
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The first one made use of a Taylor series expansion and still involved error 
functions, but the second one involved a regression curve between wi and wr as a 
function of skewness and ( )w wi

2 1 2/ . Curve coefficients were obtained from 
many “exact” (look-up table) solutions to Equation (66) over a range of variance 
and skewness values. Although both solutions of Anfossi et al. satisfy the well-
mixed condition and do not appreciably depart from the correct or “exact” 
solution, the regression method uses considerably less computing resources and 
seems a suitable approach to applying boundary conditions in three-dimensional 
particle models. Note that although Anfossi et al. used the Baerentsen and 
Berkowicz (1984) closure (see section 2.3), their solutions can be modified for 
other closure schemes. 
 
While the above formulation of the boundary condition is based on a positive 
correlation between the incident and reflected speeds, Nasstrom and Ermak 
(1999b) developed and tested a formulation in which reflected speed is negatively 
correlated with the incident speed. This originated from observation of near-
surface convective circulation patterns in which air in the core of a downdraft 
region penetrates deep into the surface layer and, rather than moving back up 
immediately, spreads away from its centre along the surface, while moving 
horizontally toward convergence zones that feed the updrafts in the mixed layer. 
Application of this boundary condition in simulations of the Willis and Deardorff 
(1976, 1978, 1981) convective tank experiments clearly showed its superiority 
over the positively-correlated condition. 
 
2.6.2 An Interface Condition 
 
The problem of random-walk modelling of diffusion across an infinitesimally-thin 
interface at which the turbulence statistics change discontinuously has been 
addressed by Thomson et al. (1997). They argued that if the Lagrangian time 
scale τ on which particles forget their velocity is much larger than the time 
particles spent within the interface, then particle trajectories in (z,w)-space within 
the interface are deterministic and do not cross each other. As a result, the 
trajectories will generally take the form illustrated in Figure 1(a), although cut-off 
circulations (Figure 1(b)) and other configurations are possible. 
 

 
Figure 1. Illustration of some possible flows in (z, w)-space [From Thomson et al. (1997)]. 
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By using the fact that the flux between two streamlines in (z,w)-space must be 
conserved, and considering a particle entering the interface (lower and upper 
boundaries zi- and zi+) from below with incident velocity wi, they showed that its 
velocity w at a height z within the interface can be obtained from  
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where pa is the density of well-mixed tracer particles. Equation (67) is equally 
applicable if w < 0. From here on, the integrals will be denoted by F, e.g. the left-
hand side of equation (67) is ( )F zw

∞ . If ( )F z0
∞  < ( )F zw ii

∞
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interface then the particle will be reflected, i.e. the particle will be reflected if wi 
is less than the critical value wc which is defined for the CBL case of ( )F z0

∞  
decreasing monotonically within the interface by  
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Otherwise, the particle will be transmitted. The reflection and transmission 
velocities wr and wt are given by 
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and 
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Similar relations can be derived for particles entering the interface from above. 
Note that particles approaching the interface from the side of weaker turbulence 
(above in the CBL case) are always transmitted. When implementing the interface 
condition in a random walk model, the particle velocity should be changed at the 
instant the particle reaches the interface, with z(t + ∆t) being calculated in a way 
that accounts for the change in velocity during the time step. 
 
2.7 Concentration Calculations Using Particle Models (W.L. Physick) 
 
Particle models are a set of algorithms for the generation of realistic trajectories 
of imaginary, fictitious particles that simulate atmospheric motion. Each particle 
can be tagged by a mass of pollutant that can be either constant or time-varying to 
allow loss of mass due to ground deposition and chemical decay phenomena. If 
the emission rate of a pollutant is Q g s-1 and the release rate of particles is N s-1, 
then the mass of each particle is Q/N g. This way, the spatial distribution of 
particle mass in the computational domain allows the calculation of a three-
dimensional mass concentration field, under certain computational assumptions. 
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For example, the most straightforward assumption is the superimposition in the 
computational domain of a three-dimensional concentration grid, with spacing 
(∆x, ∆y, ∆z). As one particle in the sampling domain represents a concentration of 
 

C = Q/(N∆x∆y∆z),     (71) 
 
the concentrations are computed simply by counting the number of particles in 
each grid cell and accumulating their masses. If concentrations need to be 
computed only at “receptor” points (e.g., at a ground level), receptor cells can be 
defined around these points and particles counted only inside those cells. A 
rigorous concentration calculation, however, should not just add up the particle 
mass in a given cell at a given time. In fact, the contribution of each particle mass 
should be weighted by the total time the particle spends inside the cell during 
each time step (Lamb, 1979), although in reality this is rarely done. 
 
It is important that sufficient particles are released per time step to give 
meaningful concentrations. One way to address this problem is to calculate N 
according to the desired accuracy of the predicted ground-level concentrations. If 
this accuracy is denoted by e, then C must be less than e. This relation is used to 
calculate the minimum value of N in the following manner. 
 

N = Q/(e∆x∆y∆z)     (72) 
 
A three-dimensional mesoscale LSM is often run in two modes; near-source 
mode to determine the maximum ground level concentration (GLC), which 
usually occurs within 5 km of a stack in convective conditions, and far-field mode 
to examine the dispersion many kilometres from the stack. Experiments have 
shown (Physick et al., 1994b) that a sampling box of 1000 x 1000 x 25 m is 
adequate to calculate GLCs at distances further than 5 km from the source, but 
that it is necessary to reduce the box size to 250 x 250 x 25 m to obtain realistic 
GLCs closer in. 
 
One of the great advantages of Monte-Carlo particle models is their “grid-free” 
characteristics, which allow higher time and space resolution than other 
simulation techniques. In this respect, grid-free concentration calculations (i.e. 
calculations that do not require the definition of cells) to maintain this important 
feature of the model is appealing. “Kernel” methods (Gingold and Monaghan, 
1982) allow grid-free concentration calculations that are smooth and efficient. 
Kernel methods for air quality modelling are discussed by Lorimer (1986). A 
general form of kernel density estimator is 
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where c is the concentration in r at time t; l is the time-dependent resolution 
bandwidth (or smoothing length); im  is the pollutant mass of each particle i; W is 
the smoothing kernel, which is a function of l and the distance rr −i  of each 
particle i from the receptor point. )(rA  is a correction term for concentration 
computation at locations r close to the boundary of the computational domain D, 
where 
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which, for an infinite domain D, reduces to )(rA  = 1 everywhere. 
 
Several kernel functions W are available in the literature, and a discussion of the 
optimal choice of kernel for different situations is given by de Haan (1999). The 
most common is the Gaussian kernel, in which 
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The choice of l is critical. This term should not be kept constant as done in many 
applications, but it should change in relation to a natural length scale. In general, l 
should be particle dependent and should be related to the mean interparticle 
separation around r. Only particles with li <d  give substantial contribution to c 
(Lorimer, 1986). If l is too small, the spatial distribution of the concentration c is 
“jagged” with a series of local maxima at each ir ; if l is too large, c becomes 
overly smooth. 
 
Using a Gaussian kernel, the particle model becomes very similar to the puff 
models described in Chapter 8. It is important to note that for a puff model, l is 
substituted by ,, yx σσ  and zσ  (i.e., the standard deviations of the spatial 
concentration distributions of each puff), and these values are related to the 
physics of atmospheric diffusion, while, in the kernel method, l should be related 
only to the density of the particles around r. However, Yamada and Bunker 
(1988) use a kernel density estimator for their RAPTAD particle model, which in 
reality makes it a puff model, in which each particle i is associated with time-
growing yixi σσ ,  and ziσ  values that are estimated based on the homogeneous 
diffusion theory by Taylor (1921). 
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2.8 Buoyancy Phenomena Simulation (H. van Dop) 
 
The concept of the random walk has some attractive features also for plume rise 
formulations. Zannetti (1984) and Cogan (1985) (see Chapter 6) pioneered 
Lagrangian models for buoyant dispersion, however, on a somewhat ad-hoc basis. 
Also in section 4.4 of chapter 6 in Volume I of this book series, a more 
fundamental formulation of buoyant tracers is presented.  
 
Two major aspects distinguish buoyant and passive dispersion:  

(i) buoyant fluid particles “create” their own turbulent field in an 
environment with its own turbulent characteristics, and  

(ii) the exchange processes between the plume particles and the (turbulent) 
environment is an essential element in the dynamics.  

 
The buoyant plume is an envelope, which contains a mixture of ambient and 
(most of the) originally released, buoyant fluid. Some of the original buoyant 
fluid may be taken away from the plume and become so remote that it is no longer 
considered to be part of it. On the other hand, the volume of the plume expands 
due to turbulent intrusions of ambient air resulting in an increasing ambient 
fraction and consequently, a gradual loss of plume buoyancy. 
 
A Lagrangian plume particle can be defined as a small entity, which possesses the 
mean characteristics (velocity, temperature) of the plume. Stochastic fluctuations, 
directly related to the turbulent intensity within the plume, determine the rate of 
growth of the plume width and are superimposed on the mean characteristics. 
Ultimately the plume (particle) dynamics must converge to the environmental 
dynamics. An important difference, however, between temperature and velocity is 
that for velocity changes (by pressure forces), no mass exchange is required, 
whereas (turbulent) temperature changes require the exchange of (particle) mass 
and environmental mass, thus in conflict with the (conventional) idea of 
Lagrangian particles moving with conserved properties in a turbulent flow. 
 
In section 4.4 of chapter 6 in Volume I of this book series, we formulated the 
dynamic equations for such a particle. It should be noted that this concept, where 
a plume is thought to consist of a superposition of many independent trajectories 
of plume particles disregards all kinds of non-linear processes within the 
infrastructure of the plume. Their dynamic effects are thus ignored. 
 
According to inertial sub-range theory we expect the following relationship 
between the temperature dissipation function, εθ, and the structure function, Dθ: 
 

Dθ ≡ Θ t( ) − Θ t +τ( )[ ]2
= εθ τ       

 
We further expect that the autocorrelation of Θ is exponential, and consequently, 
its spectrum behaves as ω−2. This enables the dynamic description of temperature 
to be suitably formulated in a Lagrangian framework as a Langevin equation: 
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dΘ = −
Θ − Θa

Tp

dt + ε B
1 / 2 dω B t( ),

    
 

 
since it guarantees the above properties. As we saw in section 4.4 of chapter 6 in 
Volume I of this book series, the Lagrangian formulation explains the basic 
features of plume motion in complex environments. 
 
2.9 Reactive Chemistry (P. Hurley) 
 
A theoretical approach to the inclusion of reactive chemistry in a Lagrangian 
framework has, as yet, not been dealt with in a satisfactory way. This is true of all 
Lagrangian approaches (Plume, Puff and Particle models). In LSMs, many 
independent particles are tracked, along with information on position and 
incremental mass of a pollutant. First-order reactions, where there is a single 
species, can be represented fairly simply in a Lagrangian approach, by 
exponentially decaying particle mass. Higher-order reactions, where there are 
more than one species, cannot be handled by changing individual particle mass 
because of the non-linear nature of the chemical reactions. 
 
For atmospheric applications, a hybrid Lagrangian/Eulerian approach is, so far, 
the only way of incorporating chemical reactions into Lagrangian air pollution 
models. For example, in the model of Chock and Winkler (1994a, b), a Eulerian 
Grid Model (EGM) incorporating a 10 reaction photochemical scheme is solved 
for pollutant advection and diffusion using the LSM, while chemistry is solved for 
using the EGM. Similarly, in the Lagrangian Atmospheric Dispersion Model 
(LADM) of Physick et al. (1994b), the LSM was extended to incorporate a 
simple, semi-empirical photochemistry scheme called the Integrated Empirical 
Rate (IER) method. LADM used a LSM approach to solve for advection and 
diffusion, and a local Eulerian approach to solve for the chemistry. These hybrid 
approaches use a method to convert between particle mass and total concentration 
as follows. At each timestep, for each particle, summed particle mass in a volume 
(either fixed grid or moving local grid) is converted to total concentration for each 
species, and then the chemical reactions are performed in this volume to 
determine the new concentrations. These new concentrations are then converted 
back to individual particle mass using a mass weighted approach that uses the 
change in concentration and the previous (before reaction) particle mass. This 
approach has the advantage that both advection and diffusion for each species is 
solved for using the LSM approach, which is more accurate for advection and 
better represents diffusion close to point sources compared to the Eulerian 
approach, but has the disadvantage that conversion of concentration to particle 
mass is computationally expensive. 
 
An alternative hybrid approach is used in The Air Pollution Model (TAPM) of 
Hurley (1999). In TAPM, an EGM incorporating the Generic Reaction Set (GRS) 
photochemical scheme, optionally includes a LSM for user-selected point 
sources. The approach taken in this model is that the LSM solves advection and 
diffusion for pollutant species emitted from selected point sources without 
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chemical transformation, and the EGM is run side-by-side to include advection 
and diffusion by non-LSM sources and to compute the chemical reactions using 
total concentration (LSM + EGM). This approach avoids the need to convert 
between particle mass and concentration for use in the chemical reactions, thus 
saving computer resources. Note that this approach can allow the EGM 
concentration to be negative. For example, in the case when all emissions are 
represented by the LSM, then losses resulting from chemical reactions can result 
in negative concentration in the EGM, but positive total (LSM + EGM) 
concentration. 
 
Of course, a preferred approach would be to include chemical reactions directly in 
the Lagrangian framework, but from a theoretical viewpoint, it is not clear how 
this can be achieved at the moment. 
 
2.10 Predicting Higher-Order Concentration Moments (A. Luhar) 
 
One-particle Lagrangian stochastic models have been successful in capturing the 
essential features of mean tracer dispersion in the atmospheric boundary layer, 
and are now used routinely in larger-scale modelling systems for air quality 
management and impact assessment studies. However, since these models assume 
that each tracer particle has an independent motion, they can only predict the 
ensemble-mean concentration field. They cannot provide any information about 
the higher order concentration fluctuation statistics (e.g., the variance), which is 
required when addressing topics such as “peak-to-mean” concentration ratios, 
odour estimates, uncertainty in air quality models, and accidental release of toxic 
and flammable gases. 
 
The two-particle Lagrangian stochastic approach (see also Section 2.2) in which 
two particles are released simultaneously with their motions correlated, can 
provide information on the variance of the concentration distribution, but 
developments in this area have so far been restricted to (idealised) homogeneous, 
isotropic turbulence in studies of the fundamental aspects of relative diffusion 
(e.g., Thomson, 1990; Borgas and Sawford, 1994). An extension of this approach 
to inhomogeneous flows in the atmospheric boundary layer is difficult, largely 
because of the mathematical complexities generated by the turbulence 
characteristics, and the extensive input requirements (e.g., the field of two-point 
Eulerian velocity statistics) which, at present, can only be obtained from high-
resolution turbulence models. 
 
Recently, one-particle Lagrangian models have been used in conjunction with the 
meandering plume approach of Gifford (1959) to determine higher order 
concentration fluctuation statistics for practical applications (Weil, 1994; de Haan 
and Rotach, 1998; Luhar et al., 2000). The original analytical model of Gifford 
assumes that the total (or absolute) dispersion can be split into two independent 
(Gaussian) parts−the meandering part and the relative-diffusion part−with the 
production of the fluctuations caused solely by the meandering of the ensemble-
mean instantaneous plume. The spread of the mean instantaneous plume is 
prescribed according to the relative diffusion theory. This model has been 
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particularly successful for predictions close to the source where meandering is the 
primary mechanism responsible for generating fluctuations, but it ignores the in-
plume fluctuations that dominate the overall fluctuation statistics in the far field.  
 
In the skewed meandering plume model of Luhar et al. (2000) developed for the 
convective boundary layer, the relative diffusion is parameterised, and a one-
particle Lagrangian model is used to determine the meander trajectory distribution 
of the instantaneous plume. The in-plume fluctuations in the model are accounted 
for via a gamma probability density function (PDF) based on the work of Yee and 
Wilson (2000). The use of the one-particle Lagrangian approach for the meander 
trajectory calculation accounts for the flow inhomogeneity. The model of Luhar et 
al. (2000) is an improvement over other models based on the meandering plume 
concept (Weil, 1994; de Haan and Rotach, 1998), and can be applied to skewed as 
well as Gaussian turbulent flows. 
 
In the meandering plume approach, the movement of the centroid of the 
instantaneous plume is described in a fixed (or absolute) coordinate system 
relative to the source while the concentration distribution within the instantaneous 
plume is specified in a relative (or local) coordinate system whose origin is 
located at the centroid of the instantaneous plume. All model concentration 
statistics are calculated in the fixed coordinate system. If one assumes that the 
plume meanders in the lateral (i.e., crosswind) direction (y) is statistically 
independent of that in the vertical direction (z), the nth moment of concentration 
at location (y, z) at travel time t is given as (Luhar et al., 2000): 
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where crcr ii ,/1 2=λ  is the concentration fluctuation intensity in the relative 
coordinate system, Γ(λ) is the gamma function, σyr and σym are the relative and 
meander spreads, respectively. In the lateral direction, h is the boundary-layer 
height, zrc  is the mean vertical concentration distribution in the relative frame 
(which is taken to be skewed in the CBL), pzm is the meander PDF in the vertical 
which is calculated numerically using a one-particle Lagrangian model. The 
above equation assumes that the lateral meander and relative components are 
Gaussian. It reduces to the concentration moment equation of Yee and Wilson 
(2000) if the vertical components are also assumed to be Gaussian, and further to 
Gifford's moment equation if the in-plume concentration fluctuations within the 
relative plume are neglected (i.e., icr→0, λ→∞). 
 
An animation of the output of the above skewed meandering plume model can be 
viewed at http://www.dar.csiro.au/pollution/Meander/index.html. 

http://www.dar.csiro.au/pollution/Meander/index.html


128  Air Quality Modeling – Vol. II 

 
 
3 LSM Applications 
 
3.1 Simulation of Dispersion in Convective Conditions, Including 

Fumigation (P. Hurley) 
 
LSMs have been used to model dispersion from passive point sources in both 
fully developed convective boundary layers (CBL) and for fumigation into 
growing CBL, including thermal internal boundary layers (TIBL). Results from 
these models have been compared to data, including laboratory experiments 
relevant to the CBL, laboratory experiments of fumigation and CBL entrainment, 
and field experiments. The demonstrated ability of LSMs to model both near- and 
far-source GLCs associated with emissions from elevated sources, especially in 
convective conditions, has led to them being applied to assessments of the impact 
of existing and proposed power stations, smelters, etc. (Noonan et al., 1994; 
Physick et al., 1995). 
 
Early applications of the LSM approach within a mesoscale meteorological model 
(e.g., McNider, 1981) suffered from the lack of a theoretical basis for the 
Langevin equation when applied to the inhomogeneous, skewed turbulence of the 
CBL (see also Section 2.1). Although simulations looked qualitatively reasonable, 
the Gaussian, homogeneous form of the traditional Langevin equation, even with 
the drift correction term of Legg and Raupach (1982), resulted in particle 
accumulation in regions of lower turbulence (e.g., near the boundaries of the 
CBL). The development of a form of the Langevin equation for Gaussian, 
inhomogeneous turbulence by Wilson et al. (1981) and Thomson (1984), allowed 
LSMs to be formulated in a way that alleviated this problem for Gaussian 
turbulence. Non-Gaussian or skewed turbulence, as present in the CBL, was 
usually included in LSMs through the random forcing term in the Langevin 
equation. For example, this approach was used by Baerentsen and Berkowicz 
(1984), De Baas et al. (1986) and Sawford and Guest (1987), and results from 
these models were compared to the laboratory experiments of Willis and 
Deardorff (1976, 1978, 1981). As described in Section 2.2, theoretical 
developments by Thomson (1987) allowed the use of a form of the Langevin 
equation that could handle skewed, inhomogeneous turbulence. This new theory 
allowed the skewed nature of the CBL to be more correctly incorporated into the 
non-random terms of the Langevin equation in a way that satisfied the well-mixed 
criteria, while leaving the random terms Gaussian. It was applied to model the 
laboratory experiments of Willis and Deardorff (1976, 1978, 1981) independently 
by Sawford (personal communication, 1989) and Luhar and Britter (1989).  
 
Various closure schemes for PDFs under CBL conditions were discussed in 
section 2.3 of chapter 6 in Volume I of this book series, but the evaluation by 
Luhar et al. (1996) identified important differences between the schemes, with 
implications for modelling fumigation. The largest differences between closures 
occurred for the case where the source height was near the top of the CBL (which 
is relevant to fumigation). It is not only the peak ground level concentration value 
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that is strongly influenced by the choice of closure scheme, but also the distance 
downwind at which the plume first reaches the ground. For this source height, the 
laboratory data against which the schemes were evaluated showed no 
distinguishable peak, a characteristic that was reproduced by two of the four 
closures, and was also observed for low entrainment rates in direct measurements 
of fumigation in further tank experiments by Hibberd and Luhar (1996). These 
laboratory fumigation experiments were designed to determine the influence of 
entrainment rate on concentration levels for a wider range of growth rates than 
previously examined by Deardorff and Willis (1982).  
 
Comparison of LSM predictions to CBL and fumigation field data include those 
of Brusasca et al. (1989) for Karlsruhe, Rotach et al. (1996) for Copenhagen, 
Ferrero et al. (1995) for Copenhagen, and Luhar and Sawford (1995) for 
Nanticoke. Generally, simulations compared well to the data and to predictions 
from simpler models. LSMs should also be compared to datasets gathered in 
convective conditions in complex terrain, as this is potentially where they will 
have advantages over Gaussian plume or puff Lagrangian models, as discussed in 
Section 3.5. More comparisons with field data are needed, and should be done 
with LSMs for the above-mentioned datasets, as well as for other available CBL 
datasets such as CONDORS (Eberhard et al., 1988) and Kincaid (Hanna and 
Paine, 1989) for the CBL, and Kwinana for coastal fumigation (Sawford et al., 
1998). 
 
3.2 Simulation of Dispersion in Stable Conditions (E. Ferrero) 
 
As an example of application of a LSM to a real case in stable conditions, 
simulation results from the Lillestrøm (Norway) experiment (Gronskei, 1990; 
Olesen, 1998) are presented. The data set includes the measurements of tracer 
released from a 36 m mast. The campaign took place in an almost flat, residential 
area during winter with the sun at very low angles above the horizon. The ground 
was snow-covered, the temperature was around minus 20ºC and rather strong 
stable conditions prevailed, with low or near calm wind conditions (Olesen, 
1995). The comparison is made in terms of crosswind integrated concentrations 
(CY) and arcwise maximum (ARCMAX/Q), normalised by the emission rate Q, 
and the standard deviation of the crosswind concentration distribution (SIGY). 
 
The Lillestrøm experiment was simulated with LSMs by Ferrero et al. (1996), 
Ries et al. (1997) and Rotach (1998). Ferrero et al. (1996) used, as input for the 
model, the measured data and the Hanna (1982) turbulence parameterisation 
(Section 2.4); for the horizontal Lagrangian time scales, they imposed a constant 
value equal to 300 s and the boundary layer height was computed from: 
z u

fi = 0 25. * . The results were satisfactory as far as SIGY was concerned, while 

the results about ARCMAX/Q and CY/Q were less accurate. It was also found 
that the model underestimated the concentrations on the first arc in some runs. 
Ries et al. (1997) applied three LSMs to simulate the Lillestrom data set. Each 
model was initialized with the same pre-processor and wind standard deviations 
but with different Lagrangian time scale parameterisations. Despite this being the 
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only difference, simulation results were significantly different, confirming the 
great importance of a correct choice of the time scales in LSMs (Ferrero and 
Anfossi, 1998). 
 
Rotach (2001) applied a Lagrangian particle dispersion model to this data set 
distinguishing the urban cases, in which the roughness sub-layer is considered, 
from non-urban cases in which it is neglected. He suggested that in the urban 
atmosphere the surface layer is not close to the ground, but it is superposed to the 
roughness sub-layer whose extension is 3 bh , where bh  is the average building 
height. The results obtained are comparable with those of Ferrero et al. (1996) 
except for SIGY, which is predicted less accurately. 
 
It should be mentioned that the Lillestrøm data set has some problems when 
models based on similarity theory for the turbulence description are used 
(Gryning, 1999). However, this data set was here introduced because, to our 
knowledge, there are no other published examples of LSM simulation of 
dispersion exercises carried out in stable conditions. 
 
3.3 Simulation of Dispersion in Neutral Conditions (E. Ferrero) 
 
A useful representation of the real atmospheric flow in neutral conditions can be 
obtained in a wind tunnel. The initial and boundary conditions in the experiments 
carried out in such a facility can be controlled and accurately reproduced. For 
these reasons, these kinds of experiments are good tests for model evaluation. An 
example is the wind tunnel EPA-RUSVAL tracer experiment (Khurshudyan et al., 
1990) which involved a neutral flow on a 2-D valley with an aspect ratio a/H = 8. 
Measurements were taken of the turbulence parameters and the 3D concentration 
field. Ferrero et al. (1999) simulated this experiment using a complete 3-D model 
system (RMS, see also Section 2.5) based on the mesoscale model RAMS (Pielke 
et al.), the interface code MIRS (Trini Castelli and Anfossi, 1997; Trini Castelli, 
2000) and the LSM SPRAY (Tinarelli et al., 2000). The simulated cases consisted 
of a source placed near the bottom of the valley. They implemented in RAMS two 
new turbulence models (E-l and E-ε), providing, through the code MIRS, the 
input for the dispersion model SPRAY. They found an improvement in the model 
results using the turbulent quantities directly calculated from the output of the 
turbulence model instead of using the Hanna (1982) parameterisations based on 
the surface layer theory. 
 
In a previous work (Tinarelli et al., 1994) the same team applied an old version of 
SPRAY to a similar experiment carried out in the same wind tunnel 
(Khurshudyan et al., 1981) simulating a neutral flow over a gentle hill. The three-
dimensional mean flow field was provided by a mass-consistent model and the 
turbulence quantities were parameterised. The results were satisfactory. 
The validation of a LSM coupled to a mass-consistent model against data 
measured in a wind tunnel was presented by Duran et al. (1998). They simulated 
the dispersion of radionuclides released from a reactor building of two nuclear 
power plants, the first one over flat terrain and the second over hilly terrain. The 
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turbulence characteristics were modified in order to take into account the wake 
region generated by the building. 
 
3.4 Simulation of Dispersion in Urban Conditions (E. Ferrero) 
 
As an example of application of a LSM to a case of urban (stable and unstable) 
boundary layer, the Indianapolis experiment (TRC, 1986) is presented. This data 
set includes many buoyant tracer releases in an urban area in different stability 
conditions. The emission point is an 84 m stack and measurements of ground 
level concentrations are available on arcs at distances between 0.25 and 12 km 
from the source. Meteorological data are given at different locations in urban, 
suburban and rural areas in the surface layer and some quantities have also been 
measured at a height of 94 m at the top of a building. Vertical profiles of wind 
velocity and temperature were gathered from minisondes and acoustic sounders. 
The model comparison is made in terms of cross wind-integrated concentrations 
(CY), standard deviation of the crosswind concentration distribution (SIGY), 
arcwise maximum (ARCMAX) and azimuth of the maximum (AZMAX). 
 
Both daytime and nighttime releases were simulated by Ferrero et al. (1998 and 
1999) using a LSM. The input of the model was prescribed by both measured 
quantities and parameterisations (De Baas et al., 1986; Hanna, 1982) or similarity 
relationships. The model evaluation results for the daytime cases demonstrate that 
SIGY and AZMAX agree with the corresponding measured quantities while CY 
and ARCMAX are overestimated. In the simulations of the nighttime cases, the 
authors imposed a neutral parameterization in the case of |L| > 100 (where L is the 
Monin-Obukhov length), in order to take into account the additional mixing due 
to the presence of the urban boundary layer, as also stressed by Hanna et al. 
(2001), obtaining better results than using stable parameterization. 
 
The influence of a strong plume rise was stressed by Rotach (1998), who 
simulated the Indianapolis experiment with a LSM. He observed that plume rise 
reduces the effects of the roughness sub-layer concept introduced in his model 
and seems to be responsible for deficiencies in the simulations of the 
concentrations close to the source. 
 
As another example, the Copenhagen tracer experiment can be considered. In 
particular, we refer to the following papers: Rotach and de Haan (1997), de Haan 
and Rotach (1998), Rotach (1999) and Rotach (2001). In Rotach and de Haan 
(1997), it is stressed that, in the urban boundary layer, a roughness sub-layer 
covers the lower part of the surface layer wherein surface layer scaling cannot be 
valid, owing to the presence of roughness elements and the resulting disturbances 
of the flow. If a roughness sub-layer is included by modifying the turbulence and 
flow structure in the lowest metres of the domain according to observed (urban) 
roughness sub-layer characteristics, it is shown that the model performance is 
considerably improved. In de Haan and Rotach (1998) the Copenhagen date set is 
used to validate the Puff-Particle Model, which is based on a particle model. All 
the statistics considered in the comparison show that this model is able to 
reproduce the tracer observations. 
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Satisfactory results in simulating these experiments were also obtained by Ferrero 
et al. (1995) using their LSM. 
 
3.5 Simulation of Dispersion in Low Wind Speed Conditions (D. Anfossi) 
 
Dispersion in low wind speed and stable conditions is governed by meandering 
(low frequency horizontal wind oscillations), weak, layered and intermittent 
turbulence, air stagnation and gravity waves (Mahrt, 1999; Gryning, 1999). These 
characteristics give rise to highly non-stationary and inhomogeneous diffusion 
conditions. Even if the stability reduces the vertical dispersion, meandering 
disperses the plume over rather wide angular sectors. Thus, in particular, the 
resulting ground level concentration is generally much lower than that predicted 
by standard Gaussian plume models (Sagendorf and Dickson, 1974; Wilson et al., 
1976). As a consequence, different types of models should be used. Among these, 
the LSM has proved to be a reliable modelling tool (e.g., Brusasca et al., 1992; 
Ries et al., 1996; Oettl et al., 2001). 
 
Brusasca et al. (1992) proposed an “ad hoc” algorithm to account for the 
meandering in their LSM LAMBDA (Brusasca et al., 1989). This algorithm is 
based on the Gifford fluctuating plume model (1960). By defining iσ  (i = u,v) as 
the measured hourly averaged horizontal wind standard deviation, T

iσ  part is due 
to the turbulence and M

iσ  the remaining part due to the meandering, this last is 
computed as: 
 

( ) ( )22 T
vv

M
v σσσ −=     (77) 

 
The total sampling time (1 h) was split into N (= 20) sub-periods of 3 min. Then, 
series of wind vectors were randomly picked in such a way as to obtain a close 
approximation of the observed hourly values of mean wind speed, mean wind 
direction and standard deviation. The model was tested against the Idaho National 
Engineering Laboratory (INEL) tracer data set (Sagendorf and Dickson, 1974). 
Three experiments characterised by plume spread of 48º, 138º and 360º, 
respectively, at an arc of 200 m from the source, were chosen. The model 
reproduced the observed ground level concentrations with a reasonable degree of 
confidence. 
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Oettl et al. (2001) based their LSM on the analysis of the wind velocity Eulerian 
autocorrelation functions ( )τiR  computed over one year of sonic anemometer 
observations. The resulting ( )τiR  for the horizontal components of the wind 
vector showed a negative loop, attributed to the meandering. Their model uses a 
time-step PDF with uniform distribution (Wang and Stock, 1992). This means 
that random time-steps and a negative intercorrelation parameter ρu,v for the 
horizontal wind components (to account for the observed ( )τvuR ,  characteristics) 

are used. Mean time-intervals ht∆  are calculated from:  
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where Lv,LuT  are the Lagrangian decorrelation time scales and the PDF has the 
following expression: 
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The result is an enhanced dispersion in low wind situations. Since the model 
reduces to the Langevin equation for ρu,v = 0.9, it can be used for all wind speeds 
simply by adjusting the intercorrelation parameter. This model was applied to the 
same INEL dispersion data (all the tests were simulated) and showed reasonable 
agreement.  
 
3.6 Transport and Dispersion at the Mesoscale (W.L. Physick) 
 
As well as showing skill in predicting near-source maximum GLCs from point 
sources, LSMs are particularly useful for applying to dispersion of pollutants by 
sea breezes and in complex terrain. It is not only the good agreement shown with 
observed concentrations that is impressive, but also the insight into the dispersion 
processes that is available through both static and animation plots of particle 
positions. 
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3.6.1 Sea Breeze Dispersion 
 
Using a three-dimensional meteorological model (RAMS) and a LSM (LPDM), 
Lyons et al. (1995) discussed the importance for dispersion modelling of 
accounting for vertical motion. They showed that emissions from shoreline 
sources can be transported vertically out of the sea breeze inflow layer at the 
front, as illustrated in Figure 2, and back over the water at higher levels. Using the 
same models for the same region (Lake Michigan), Eastman et al. (1995) 
estimated that about 70% of emissions undergo at least one recirculation out over 
the lake and then back towards the shore. They also ran a Gaussian-plume model 
(ISC), which is unable to represent vertical motion or recirculation, and showed 
that surface concentrations derived from the two models differed significantly in 
structure and magnitude. 
 
When offshore flow in coastal regions advects morning emissions out to sea, they 
are often returned in the sea breeze inflow during the afternoon. This different 
type of recirculation (in the horizontal plane) is the primary mechanism 
responsible for elevated ozone readings in all of Australia’s major coastal cities. 
A coupled meteorological and Lagrangian stochastic model (LADM) has been 
used successfully in these cities to understand the important processes involved 
(Physick, 1996). Similarly, recirculation of SO2 has been observed and modelled 
with a LSM for Israel by Robinson et al. (1992). 
 
Sea breezes are not just confined to near the coast, but can travel to at least 200 
km inland. Buckley and Kurzeja (1997) observed that the sea breeze penetrates to 
the Savannah River Site (SRS, 150 km inland) from the eastern coast of the 
United States on about 15% of all nights. Using RAMS and the stochastic model 
LPDM, Buckley and Kurzeja were able to investigate the sea breeze dispersion of 
emissions from the SRS, concluding that vertical, horizontal and temporal wind 
shear, and vertical motion were the dominant factors in the plume dispersion. 
None of these effects are contained in the surface meteorological files used to run 
the simpler Gaussian models. In a study done to investigate the effect of SO2 
emissions from coastal regions on National Park Service management areas in 
Southern Florida (80 km inland), Segal et al. (1988) used RAMS and LPDM, 
finding that the complexity of the dispersion patterns which can occur for such a 
large travel distance necessitate a realistic assessment of mesoscale dispersion in 
coastal regimes. 
 
Kerr et al. (2001 a, b) applied the modelling system RMS (see Section 2.5) to 
investigate the effects of a typical breeze regime on dispersion in coastal complex 
terrain. The inhalable particulate matter emitted by Fertilizer Plants located at 
Cubatão (Brazil) was simulated. Cubatão is an industrial city placed on the flat 
terrain between the escarpment of Serra do Mar sierra (700 to 1000 m high) and 
the Atlantic Ocean. For a typical daytime circulation, the sea breeze may be 
blocked by the mountain escarpment (see Figure 3) or overcome the mountain 
ridge and penetrate deep inland (see Figure 4). Thus, on many occasions, the 
Cubatão emission may reach São Paulo (44 km inland). For a typical nighttime 
circulation, the katabatic winds and land breeze transport the particulate matter 
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over the shoreline plains (see Figure 5) where many towns (700,000 inhabitants) 
are located. 
 
3.6.2 Dispersion in Complex Terrain 
 
LSMs have been used in a number of simulations of the ASCOT (Atmospheric 
Studies in COmplex Terrain) tracer data sets. Luhar and Rao (1993) coupled their 
LSM to a 2D-katabatic flow model to simulate the tracer concentration data 
obtained over a nearly two-dimensional slope in the Anderson Creek Valley, 
California. Magnitude predictions were good at nearly all sample sites, but 
observed concentrations decreased more slowly with time than the predicted ones, 
most likely due to pooling of the drainage air in the valley basin, causing flow 
stagnation and emphasising the need for a three-dimensional meteorological field, 
modelled or analysed. 
 
Tracer concentrations from the 1991 ASCOT Colorado Front Range nocturnal 
experiment (near the Rocky Flats Plant) were modelled well with a LSM by 
Luhar and Rao (1994), using winds and turbulence parameters derived from 
analyses of the observed meteorological data. Their diagnostic approach can be 
compared to the prognostic approach of Poulos and Bossert (1995) and Fast 
(1995) who used three-dimensional meteorological models (Fast also used four-
dimensional data assimilation) and LSMs to simulate the same period. The time- 
and space-varying nature of the drainage flow in this challenging region is 
illustrated by Figure 6 (Fast, 1995), which shows the hourly-averaged 
concentration and streamlines at two different times. Fast (1995) compared his 
results, and those from Poulos and Bossert (1995), to the results from air quality 
models coupled to several diagnostic models and concluded that the latter predict 
more accurate maximum concentrations. He suggests that this may be due to the 
stable turbulence parameterisations in the mesoscale prognostic models (rather 
than the mean wind field) as these directly affect the way diffusion is treated in 
the LSMs.  
 
Studies involving LSMs in complex terrain under daytime conditions include the 
Swiss Alps tracer experiments (Anfossi et al., 1998) and the evaluation of 
emissions from coastal power stations in Australia (Noonan et al., 1994) and 
Spain (Hernandez et al., 1995). 



136  Air Quality Modeling – Vol. II 

 
 

Figure 2.  (a) (Top left) Plan view of a simulated plume released from a 50m 
high shoreline source into a weak lake breeze along the Lake Michigan 
shoreline; (b) (Top right) Perspective view of the plume from the southwest 
showing large quantities of the plume being translocated vertically as high 
as 1600 m due to the strong upward motions in the lake-breeze frontal 
zone; (c) (Bottom) Modelled normalised surface-layer concentrations at the 
centreline of the plume demonstrating a dramatic decrease as the plume 
intersects the lake breeze frontal updrafts. 
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Figure 3.  Typical daytime situation with blocked sea breeze. (a) wind field 
at 47 m a.g.l. computed by RAMS, the colour scale refers to the wind speed 
intensity in ms-1; (b) concentration field at ground level, computed by 
SPRAY, the colour scale refers to concentration amounts in µgm-3. 
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Figure 4.  As in Figure 3 but for typical daytime situation with sea breeze 
overcoming the mountain barrier. 
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Figure 5.  As in Figure 3 but for typical night-time situation with land breeze. 
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Figure 6.  Wind field (streamlines) 26 m AGL at: (a) 2300 MST, 4 February 
1991 with hourly-averaged surface concentration between 2300 and 0000 
MST; and (b) 0200 MST 5 February 1991 with hourly-averaged surface 
concentration between 0200 and 0300 MST [From Fast (1995)]. 

 
 
3.6.3 Animation of LSM Simulation 
 
An animation of a three-dimensional simulation in coastal complex terrain 
showing particle dispersion and contours of ground-level concentrations from two 
point sources can be viewed in the CD-ROM version of the book. A frame of the 
animation is shown in Figure 7. The simulation using the model TAPM (Hurley, 
1999; Hurley et al., 2001) begins at midnight and continues for 24 hours (the time 
on the top left-hand corner shows days, hours and minutes). Terrain is shaded 
according to elevation, and sea areas are coloured blue. Emissions released at a 
height of 100 m from the two coastal sources are transported offshore by the 
prevailing synoptic wind and return over land early afternoon in the sea breeze. 
Towards the end of the simulation, they are channelled to the northwest along a 
valley. Particles at all heights are displayed and this is why particles are moving 
in different directions at any one time. For example, low-level particles can be 
seen moving inland in the sea breeze, while others at higher levels are moving 
offshore in the synoptic wind, enhanced by the return flow of the sea-breeze 
circulation. Note that many more particles are used to calculate the concentrations 
than are used to visualise the dispersion. 
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Figure 7.  A frame from the animated dispersion of emissions from point 
sources using a prognostic three-dimensional air quality model TAPM.  
(The animation is provided in the CD-ROM version of this book.) 

 
3.7 Long-Range Transport (S. Trini Castelli) 
 
International frontiers are disregarded by pollutants dispersing through the 
atmosphere. The Chernobyl accident at the end of April 1986 abruptly reminded 
the modelling community of the importance of improving the reliability of models 
for long-range transport. The main limitation to this kind of study was the lack of 
experimental data against which to perform the model validation, and of a 
common protocol for the evaluation of the results. An important step in 
developing this framework was the ATMES (Atmospheric Transport Model 
Evaluation Study) Project, where a quality-controlled database of the 
measurements collected for the case of the Chernobyl accident was assembled and 
made available. The results of this study were affected by the uncertainties in the 
source term and by the heterogeneity of the observed data, due to the accidental 
conditions of the release. To overcome these deficiencies, in 1992 the field 
experimental campaign ETEX (European Tracer EXperiment) was carried out. 
Tracer releases under controlled conditions and systematic monitoring enabled 
model validation and intercomparison studies, even for the case of emergency 
response. A common evaluation protocol was also set up. In this section, ATMES 
and ETEX studies are described and the results obtained by the Lagrangian 
particle models are summarised and briefly discussed. For identification, 
classification and description of the other participating models, refer to the 
relative official literature cited in the sub-sections. 
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3.7.1 The ATMES Project 
 
The ATMES Project was initiated in November 1986 by a collaboration of IAEA 
(International Atomic Energy Agency) and WMO (World Meteorological Office), 
while CEC (Commission of European Community) joined the initiative in 1987 
through the JRC (Joint Research Centre). The purpose of ATMES was to review 
and to intercompare pollutant dispersion models for the atmosphere in order to 
identify the most promising approaches for the modelling of the long-range 
transport of radionuclides and to provide guidance for future work. The area 
considered for the exercise, from 10°W to 40°E and 35°N to 70°N, included most 
of the European measuring stations for which radiological data were available.  
 
The data set supplied for the exercise contained: 

• the estimated source term for the Chernobyl plant (51° 17’N, 30° 15’E) 
consisting of release data in TBq/day for I131 and Cs137, together with an 
estimate of the effective height of the initial plume centre-of-mass 

• ECMWF meteorological data (wind components, temperature and relative 
humidity on pressure levels, wind at 10 m height, surface pressure, 
temperature at 2 m height, total cloud cover) consisting of analyses (for 
the period between 25 April 12:00 to 10 May 18:00 UTC, with 6 hours 
time interval and 1.125 degrees resolution, on the area from 81°W to 
40.5°E and from 29.25° to North pole) and of forecasts (between 25 April 
12:00 to 30 April 12:00) 

• KNMI precipitation data from 25 April to 14 May 
• list of the locations of the measuring stations, referring to I131 and Cs137 air 

concentration and Cs137 daily deposition 
 
The model results, in terms of air concentrations of I131 and Cs137, Cs137 wet and 
cumulative deposition were requested for a period of 14 days. A large number of 
modellers, 21, participated in the exercise, so that a statistical methodology was 
adopted to perform the model intercomparison (Klug et al., 1992). The ranking 
was performed separately for each data set according to several statistical 
parameters, like bias, Pearson correlation coefficient, NMSE (Normalised Mean 
Square Error), Standard Deviation, FA2 and FA5 (Fraction of calculated values 
within a factor of 2 and 5), FOEX (Factor of Exceedance, that is an absolute 
overestimation), FMT (Figure of Merit in Time), FMS (Figure of Merit in Space) 
and Kolmogorov-Smirnov test. The criteria adopted for the ranking was to give 
equal importance to the different statistical parameters, so that an equal weight 
was associated with each of them in summing up to obtain a total score.  
 
The seven Lagrangian particle models that participated in the intercomparison are 
listed in Table 1. To single out the quality of their performances among the other 
models, Table 2 lists the five models providing the best results for the different 
data sets. 
 
 



11   Lagrangian Particle Models 143 

 

Table 1.  List of the Lagrangian particle models in ATMES. 
 

ATMES 
Model 

Number 

 
Model 
Name 

 
Organisation 

4 ADPIC LLNL (Lawrence Livermore Laboratory, USA) 
5 APOLLO ENEA-DISP (Committee for Research and Development of 

Nuclear and Alternative energies, I) 
8 SPEEDI JAERI (Japan Atomic Energy Research Institute, J) 
9  JMRI (Japan Meteorological Research Institute, J) 
11 JMA-

GTTM 
JMA (Japan Meteorological Agency, J) 

18  IAG (Institute of Applied Geophysics, USSR) 
20 NAME MO (Meteorological Office, UK) 

 
Table 2.  ATMES statistical ranking for the data subsets: first five models  
E = Eulerian, L = Lagrangian puff, LP = Lagrangian Particle. 

 
 
 
 

Sample 
Size 

I131 
air 

concentratio
n 
 

700 

Cs137 
air 

concentration
 

700 

Cs137 
daily 

deposition 
 

140 

Cs137 
cumulate

d 
deposition

 
95 

I131 

forecasted 
wind field 

 
35 

Cs137 

forecasted
wind field 

 
35 

 
RANK 

 
Model Number and Type 

I 5     (LP) 7     (E) 3     (L) 4   (LP) 2     (E) 10     (E)

II 18     (LP) 5     (LP) 18     
(LP) 

21    (L) 17     (L) 7     (E) 

III 7     (E) 15     (L) 15     (L) 8   (LP) 
15    (L) 

5     (LP) 2     (E) 

IV 17*     (L) 19     (L) 4     (LP) 10    (E) 10     (E) 5     (LP)

V 21     (E) 10     (E) 5   (LP) 17    (L) 8   (LP) 15      (L)
17      (L)

 *model no. 17 is a Lagrangian segmented-plume model 
 
In Table 3, the ranks corresponding to the total score of the five best models are 
reported for both the analysed and forecast meteorological input fields. This 
ranking has been obtained by summing up the partial scores of the models from 
the different data subsets. Three models did not supply full information about the 
depositions. The results obtained using the forecasts were provided by ten 
models. 
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Table 3.  ATMES statistical ranking for the total data: first five models  
E = Eulerian, L = Lagrangian puff, LP = Lagrangian Particle. 
 

 
 

RANK

Analysis 
Meteo 
Input 

Forecast 
Meteo 
Input 

 
Model Number and Type 

I  5     (LP)  2  (E) 

II  4    (LP)
 15   (L) 

 10  (E) 

III  17 (L)  7 (E) 

IV  18  (LP)  5
(LP) 

V  7  (E)  17 (L) 

 
No systematic trend in model performances was evident, with Eulerian and 
Lagrangian models attaining the same average ranking, and there was no evidence 
of a correlation between the complexity of the models and improved results. The 
outcomes of the analysis of the results showed that the cloud trajectories were 
generally well predicted when using the analysed wind field, while the 
deterioration of performances when using the forecasted fields was related to the 
strong dependency of the result quality on the meteorological input data. 
Improvement in space and time resolution and in the quality of the meteorological 
and precipitation data was recommended. From Table 3, it can be seen that a good 
quality contribution was given by the Lagrangian particle models using the 
analysed fields. In regards to the model sensitivity to simulation parameters, the 
necessity of improving the description of the boundary layer structure, including 
the interaction of the pollutant cloud with it, and of the deposition parameters was 
recognised.  
 
Considering the uncertainty and lack of information of the Chernobyl case, the 
final recommendation of the conclusive ATMES workshop in 1991 was that “…  
a controlled release experiment in Europe be launched by releasing from a given 
location a tracer which can be detected at very large distance” (Klug et al., 1992).  
 
3.7.2 The ETEX Project  
 
The ETEX Project too was sponsored by EC, WMO and IAEA and was aimed at 
evaluating the ability of meteorological services and research institutions to 
predict in real time the atmospheric dispersion of inert pollutants over large 
distances (Nodop, 1997). Two tracer releases were carried out on 23 October and 
14 November 1994, for a release period of nearly 12 hours. An ETEX modelling 
phase was performed in parallel with the experiment. The source was set in 
Monterfil (2°W, 48° 3’N, 90 m ASL, France) and the sampling domain almost 



11   Lagrangian Particle Models 145 

 

covered from 43° to 60°N and 2° to 25°E. When the release started, the 28 
modellers, previously alerted, were notified of the starting time, source location 
and emission rate. The models were run in real-time to predict the evolution of the 
tracer cloud and the predictions were sent to the statistical evaluation team as 
available. In Table 4, the Lagrangian particle models participating in the real-time 
phase in ETEX are listed.  
 

Table 4.  List of the Lagrangian particle models in ETEX real-time phase. 
 

ETEX real-time 
Model Name 

 
Organisation 

 
LPDM DWD (German Weather Service, D) 
APOLLO ANPA (National Agency for Environment, I) 
ADPIC LLNL (Lawrence Livermore Laboratory, USA) 
WSPEEDI JAERI (Japan Atomic Energy Research Institute, J) 
NAME II MetOff (Meteorological Office, UK) 
SNAP NMI (Norwegian Meteorological Institute, N) 
LPDM SRS (Westinghouse Savannah River Laboratory, USA) 
STADIUM TYPHOON (RU) 
 KMI (Royal Institute of Meteorology, B) 
TRADOS FMI (Finnish Meteorological Institute, Fi) 

 
For ETEX, statistical measures used in the ATMES case were augmented by the 
Geometrical Mean Bias (MG) and the Geometric Mean Variance (VG). The 
statistical analysis of results from the first release showed that a group of models 
were able to forecast in real time the cloud position and its horizontal extent up to 
a period of 48 hours, although the forecast worsened for later times. The 
concentration evolution at the stations was not always correctly reproduced (not 
even by the best models). A group of 6 models showed excellent performances, 8 
models had few excellent and some average performances, and 4 models had 
intermediate results. In the second experiment, the presence of the ground level 
tracer cloud was limited to 24 hours after the release and the number of non-zero 
measurements restricted the statistics to few parameters. None of the participating 
models were able to simulate correctly the ground level concentrations, neither 
spatially nor as time evolution. The general model trend was to greatly over-
predict the concentrations. 
 
From the analysis of ETEX real-time results, it was not possible to attribute the 
differences between measurements and predictions specifically to the 
meteorological or the dispersion phases. Also in order to relate the differences in 
observed and calculated concentrations to the dispersion simulation, the ATMES 
II modelling exercise was launched almost two years after the ETEX campaign 
(Mosca et al., 1998; Girardi et al., 1998). The exercise was open to all the long-
range modellers, and participants were required to calculate the concentration 
field of the ETEX first tracer experiment using a common meteorological input 
data set, corresponding to the ECMWF analysis for the ETEX period, but also 
models using non-ECMWF data were considered. The total number of models 
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participating in ATMES II was 49, 35 of them using ECMWF analyses (coded 
from 101 to 135) and 14 using non-ECMWF data (coded from 201 to 214). In 
Table 5, the Lagrangian particle models participating in ATMES II are listed.  
 

Table 5.  List of the Lagrangian particle models in ATMES II. 
 

ATMES 
II 

Model 
Number 

 
Model 
Name 

 
Organisation 

101 FLEXPART IMP (Univ. Wien, Institute of Meteorology and 
Physics, A) 

106 LPDM DWD (German Weather Service, D) 
107 LPDM DWD (German Weather Service, D) 
112 DIFPAR EDF (French Electricity, F) 
113 APOLLO ANPA (National Agency for Environment, I) 
114 MILORD ICGF/CNR (National Research Council, I) 
115 WSPEEDI JAERI (Japan Atomic Energy Research Institute, J) 
116 MRI-LTM MRI (Meteorological research Institute, J) 
118 MATHEW/

ADPIC 
FOA (Defence Research Establishment, S)  

119 NAME MetOff (Meteorological Office, UK) 
131 SNAP DNMI (Norwegian Meteorological Institute, N) 
132 LPDM SRS (Westinghouse Savannah River Laboratory, 

USA) 
   
203 LPDM DWD (German Weather Service, D) 
207 MRI-LTM MRI (Meteorological research Institute, J) 
209 NAME MetOff (Meteorological Office, UK) 
210 NAME MetOff (Meteorological Office, UK) 
213 SNAP DNMI (Norwegian Meteorological Institute, N) 

 
The statistical analysis of the results was performed on the same parameters as for 
the ETEX real-time phase and divided into three stages: a time analysis, 
considering concentrations at a fixed location for the whole duration of the 
episode; a space analysis, considering concentrations at a fixed time all over the 
domain; and a global analysis, where all the concentration values at any time and 
location are considered. In Table 6 the ranking of models based on the global 
analysis is reported, giving to each statistical index the same weight as in the 
statistics performed for ATMES and ETEX projects. The rank is given for the 
different groups separately and then for the total of the models. In the second 
column the first ten models in the statistical ranking for the group ECMWF (35 
models) are listed. In the third column, there are the first five models for the non-
ECMWF data models (14) and in the fourth column the first ten models over the 
total of models (49) are ranked. 
 
As an overall result, a general substantial improvement in ATMES II over those 
from ETEX real-time phase was found. This was expected on account of the 
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better resolution of the meteorological fields used and the elapsed time between 
the two exercises during which improvement in models and tunings of key 
parameters were possible.  
 
Considering that the participating Lagrangian particle models were 17 out of 49 
and that in the ranking of the total models, eight of them are in the first ten, a 
good performance of this kind of models can be recognised in long-range 
dispersion modelling. 
 

Table 6.  ATMES II exercise: statistical ranking E = Eulerian,  
L = Lagrangian, LP = Lagrangian Particle,  sL = semi-Lagrangian. 
 

 
 

RANK 

ECMWF 
Meteo Input

Models 

Non-ECMWF
Meteo Input 

Models 

 
All 

Models 
Model Number and Type 

I  107   (LP)  209    (LP) 107    (LP) 

II  111   (sL)  210    (LP) 111    (sL) 

III  131   (LP)  208    (E) 209    (LP) 

IV  115   (LP)  203    (LP) 203    (LP) 

V  114   (LP)  213    (LP) 114    (LP) 

VI  127    (E-L) 210    (LP) 

VII  101    (LP) 131    (LP) 

VIII  112    (LP) 208    (E) 

IX  128    (E) 115    (LP) 

X  134    (L) 

 

101    (LP) 

 
3.8 Footprint Analysis of Scalar Fluxes (A. Luhar) 
 
Any surface source, located at (x’, y’, 0), can potentially contribute to the vertical 
flux F (e.g., with units of g m-2 s-1) of a scalar measured downwind at point (x, y, 
zm). The term footprint, f, is defined as the contribution per unit surface flux of 
each unit element of the upwind surface area to the measured vertical flux (Horst 
and Weil, 1992)  
 

''),','()0,','(),,( dydxzyyxxfyxQzyxF mo

x

m −−= ∫∫
∞−

∞

∞−

 (80) 

where Qo is the surface emission flux (g m-2 s-1) of an area-source element located 
at (x’, y’) upwind of the measurement location. Equation (80) implies that the 
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measured scalar flux is the integral of the contributions from all elements of 
upwind surface emissions, whereas the footprint (m-2) is the relative weight given 
to each elemental source. In general, for a given location, f is a function of only 
the turbulent flow field that governs transport and diffusion. 
 
Footprint estimation is useful for the identification of the sources of greenhouse 
gases, such as water vapour and methane that contribute to measured fluxes, and 
for assessing the relative importance of these sources. For many cases involving 
surface inhomogeneities, such as changes in surface roughness or moisture (e.g., 
transition from a relatively smooth arid area to an irrigated crop), footprint 
analysis can provide an estimate of the key “height-to-fetch” ratio that determines 
the optimum sitting of instruments for flux measurements. It can also facilitate the 
interpretation of airborne flux measurements in relation to tower data.  
 
Footprint analysis can often be performed in two dimensions when the source 
area is of large extent in the crosswind direction with respect to the flux 
measurement position. For such cases, Equation (80) can be written as 
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x

om −∫= ∞−    (81) 
 
where f2 (m-1) is the two-dimensional footprint. In a region with nearly uniform 
surface conditions, Qo can be assumed to be independent of x’. 
 
Equation (81) suggests that the footprint f2 is the vertical flux FL (g m-2 s-1) at the 
measurement point (x, zm) due to a continuous line source of unit strength located 
upwind at (x', 0). Thus  
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where q is the line source strength (g m-1 s-1). Figure 8 presents a schematic 
diagram of the footprint of upwind sources that contribute to the flux measured at 
(x, zm). 
 
Analytical methods have been used to predict flux footprints using analytical 
solutions to the diffusion equation for horizontally homogeneous surface layers 
(e.g., Schuepp et al., 1990; Horst and Weil, 1992; Haenel and Grünhage, 1999). 
However, these methods are not valid when the surface-layer similarity is no 
longer applicable; for example, above the surface layer (relevant to aircraft data), 
within plant canopies, or when measuring fluxes from surfaces of limited extent 
(fetch), such as small lakes or irrigated fields within arid lands, so that the effects 
of the flow inhomogeneity are important. Under such conditions, Lagrangian 
stochastic dispersion models prove valuable in predicting the footprint. They are 
also useful for testing and improving footprint predictions obtained from the 
analytical solutions. Stochastic models have been used in the past for footprint 
predictions in the surface layer (Leclerc and Thurtell, 1990; Horst and Weil, 
1992), in the convective boundary layer (Wilson and Swaters, 1991), for a step 
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change in the surface roughness and moisture (Luhar and Rao, 1993), and within 
and over forest canopies (Baldocchi, 1997). Experimental evaluation of analytical 
and Lagrangian footprint models has been reported by Finn et al. (1996).  
 
When the turbulent flow is horizontally homogeneous, the footprint f2 at a given 
height depends only on the separation between the flux measurement point and 
the elemental source. However, when the flow is horizontally inhomogeneous, it 
depends on their actual locations. In the former case, footprints due to a single 
line source, calculated at several locations downwind of the source, can be used to 
derive the footprint at a particular location due to a number of line sources located 
upwind. For this purpose, particles are released at the surface from a crosswind 
line source of unit emission flux. Particle numbers and corresponding vertical 
velocities are computed at a number of heights and downwind distances, and are 
then used to determine the average vertical flux at these locations. This vertical 
flux is equal to the footprint f2 (Equation [82]). However, in the horizontally 
inhomogeneous flow case, one may not use this procedure; the footprints are 
calculated by placing a number of line sources upwind of the measurement point 
(e.g., Luhar and Rao, 1993). The Lagrangian stochastic models mentioned above 
are generally run in forward mode to determine the footprint. That is, particles are 
released at the source position, and the position and velocity distribution of 
particles reaching the receptor position is calculated. Flesch et al. (1995) and 
Flesch (1996) use a backward Lagrangian stochastic technique for footprint 
calculations, which is potentially more efficient and flexible than the forward 
Lagrangian stochastic technique. In the backward technique, particles are released 
at the receptor position and tracked backwards to determine their distribution at 
the ground to identify the sources contributing to fluxes at the receptor. However, 
this technique is only approximately valid when the flow is horizontally 
inhomogeneous. 
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Figure 8.  Schematic diagram showing the footprint of upwind sources for 
the flux measurements made at point (x,zm) over a surface with simple 
inhomogeneity. 
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