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Abstract: This chapter focuses on the development of various Gaussian modeling techniques with 
an emphasis on the relevant mathematical and numerical details.  Beginning with the diffusion 
equation in one-dimension, we show how one solution of this differential equation for pollutant 
mixing ratio involves the Gaussian function.  The three-dimensional Gaussian plume solution is 
then constructed via consideration of the advection terms and the use of the separation of variables 
technique.  Influences of the ground and other “reflecting” barriers is then added via the method of 
images and alternative mathematical formulations of this summation of images is considered, both 
from theoretical and numerical accuracy viewpoints.  The issue of air density varying with height 
is then discussed as it complicates the solution expressed in terms of mass concentration (e.g., 
g/m3) versus the more-fundamental mixing ratio (e.g., ppm) formulation.  Having an impact on 
computed results in the 5-15% range, this density complication is presently nearly-universally 
overlooked.  Focus then shifts to extending the point source formulation to various integrated 
forms that accommodate line and area sources, and including wind shear.  Removal processes, 
particularly dry deposition, are then treated in some detail. 
 
Key Words: Gaussian methods, atmospheric dispersion modeling. 
 
 
1 Introduction 
 
As introduced in Volume 1, Chapter 7A by Venkatram and Thé (2003), the 
Gaussian plume expression, given by their Eq.(1), serves as the starting point for 
much of the air pollution modeling that has taken place during the past half-
century.  First applied to the atmospheric diffusion problem for a steady-state 
source by Sutton (1932, 1953), this equation states that a time-independent, mass 
concentration distribution, C(x,y,z), of:   
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results when a steady source of strength Q (mass/time) positioned at coordinates 
(0, 0, zs) emits into a uniform flow U(m/s) moving in the +x horizontal direction.  
This emitted material is free to spread out (or diffuse) in the two perpendicular 
directions y (horizontally transverse to the flow direction) and z (vertically), with 
the “dispersion coefficients”, σy and σz, representing the standard deviation widths 
(m) of the distribution in the y and z directions, respectively.  
 
Given the dimensions of the above expressions, one thing to note is that a Q 
expressed in g/s will give rise to a mass per unit volume (mass/volume) 
concentration C having units of g/m3; thus, clarifying use of the terminology mass 
concentration.  This terminology is worth clarifying because the word 
“concentration” is alternatively employed to indicate a mass concentration C or a 
mixing ratio concentration φ, frequently quoted in non-dimensional units of parts 
per million (ppm) or parts per billion (ppb), with the further qualification that 
these fractional mixing ratio “concentrations” represent fractional compositions 
on a mass basis, rather than a volumetric basis.  These two pollutant measures, 
mass concentration C and mass mixing ratio φ, are related by the simple 
expression C = φ·ρ, where ρ(g/m3) is the local density of air. However, this 
simple relation gives rise to one of the many problems that often lie hidden and 
unresolved within the framework of the Gaussian plume formulation, and even 
within other air pollution modeling frameworks, such as numerical Eulerian 
models. 
 
This chapter will examine various issues and simplifications intrinsic to the 
derivation of the Gaussian plume formulation and will point out various measures 
that are, or have been, suggested to correct these simplifications.  The chapter will 
then proceed to consider numerous mathematical extensions of the simple plume 
formalism to account for real-world complexities, such as barriers to plume 
mixing, pollutants emitted from area and line sources, deposition of plume 
material to surfaces, wind directional shear, and concentration fluctuations.  
Emphasis will be placed on mathematical and algorithmic details rather than on 
considering the features and merits of specific Gaussian models that currently 
continue to be applied. 
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2 Theoretical Background 
 
2.1 Diffusion and Advection 
 
2.1.1 Diffusion in One-Dimension 
 
Sir Isaac Newton is often credited with introducing the notion of gradient transfer 
of heat by noting that heat will move from hotter to cooler environments.  This 
notion of “down-gradient” transfer accounts for the minus sign one sees in the 
heat conduction proportionality relation q ∝ -dT/dx.  Apparently, clarification of 
the units of the needed proportionality constant k, to yield the modern flux 
relation, q = -k·dT/dx, was introduced many decades later in 1822 by the French 
mathematician, Joseph Fourier.  Nevertheless, this notion of down-gradient 
transport is intrinsic to the second law of thermodynamics (variously attributed to 
Carnot, Clausius, or Lord Kelvin), which states that: in any physical process the 
entropy (or disorder) of an isolated system never decreases.  This second law 
really forces the time arrow to have a single (forward) direction and explains why 
pollutant concentrations, fortunately for all of us, always move in the direction of 
greater, rather than lesser, dilution.  We now know that counter-gradient transport 
can occur and can be important in convective mixing, but that is beyond the focus 
of this chapter.    
 
The flux-gradient relation for heat was extended to diffusive mass transfer flux, 
Fd, by Adolf Fick in 1855 and was originally expressed as: 
 

F = - K· (dC/dx)    (2a) 
 
where the diffusivity K, having units of m2/s, gives rise to the flux, Fd, having 
units of g/m2/s.  As Fick’s paper dealt with salt concentration diffusion in water, it 
was not concerned with density issues, but one would reformulate this to include 
density as: 

   
x
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∂
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This flux-gradient relation, known as Fick’s First Law, serves as the basis of the 
time-dependent diffusion equation, also known as Fick’s Second Law, which is 
expressed in flux-conservative form (and updated to include density) in one-
dimension for the mixing ratio as: 
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where t is, of course, time.  It is important to note that it is the mixing ratio which 
diffuses, and not the mass concentration per se.  Thus, in an environment where 
the domain is bounded, maximum entropy or disorder is achieved when the 
mixing ratio is the same everwhere, such that any gradients in φ vanish.  Also, the 



242  Air Quality Modeling – Vol. III 

ρ in Eq.(3a) may be a function of both x and t, though temporal changes in density 
usually occur on much longer time scales and do not involve diffusive processes.  
Equation (3a) may also be expressed as a diffusion equation for mass 
concentration as: 
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In the case of a space-time uniform density field, Eqs.(3a) and (3b) are identical; 
however, differences emerge when the air density, ρ(x), becomes a function of x 
or more significantly, a function of z in the comparable 1D equation for vertical 
diffusion. 
 
One of the simplest, non-trivial solutions of Eq.(3a) is given for the y direction 
and spatially uniform K as: 
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where σ2 ≡ σ0

2 + 2 · Ky ·(x/U)   (4b) 
 
where σ0 is an arbitrary constant, and the diffusivity has been given the subscript y 
to differentiate it from the appropriate diffusivities in other dimensions.  It should 

be noted that Eq.(4a) satisfies the differential Eq.(3a) only if 
U

K
dx

d ⋅
=

2 
2σ , which 

is realized for the constant K, appropriate for Brownian or molecular diffusion, by 
σ being constrained by Eq.(4b). However, the added unit normalization condition, 
expressed below through the constraint that the integral on y over all values from -
∞ to +∞ yields one, or 
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This is valid for any definition of σ and is ensured by the factor π2  in the 
denominator of Eq.(4a). 
 
Assuming an Eq.(4a) solution to apply for both y and z dimensions, abandoning 
the constraint on σ provided by Eq.(4b), and blindly swaping C for φ enables one 
to come close to attaining the Gaussian plume of Eq.(1), except for the absence of 
the factor Q/U.  
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2.1.2 The Advection Term and Building the 3D Plume Solution 
 
In order to understand the origin of the Q/U factor, one must expand Eqs.(3a) and 
(3b) to include the advective flux term, Fa = U · ρ · φ = U · C, and write: 
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where source, S, and depletion, D, terms have been added for completion and 
would have volumetric units of g/m3/s. 
 
Now in the steady-state limit, defined as existing when dC/dt = 0, and neglecting 
losses D and along-wind or x diffusion by setting K to zero, Eq.(6b) can be easily 
integrated in x to yield C = C0 + ( ∫dx·S ) / U, where C0 is an arbitrary integration 
constant or, more physically, a background concentration.  Now just to minimize 
sleight of hand trickery, it must be pointed out that as the concentration C and 
source term S are both by definition volumetric, or 3D, entities, reconciling their 
3D nature with the 1D nature of the equation demands that one integrate over y 
and z dimensions as well to encompass the entire source.  Further postulating the 
source distribution S as the 3D delta function, Q · δ3(x) = Q · δ(x) · δ(y) · δ(z-zS), 
for a true point source located at (0,0,zS), and recalling that the normalization 
condition of Eq.(5) just yields unity for the y and z integrations over C, one 
obtains the result:  
 

U
QC  =      or  

U
Q )/( 0ρφ =    (7) 

 
where ρ0 is the presently-assumed-constant air density and the double overbar 
denotes integration over y and z dimensions.  The fact that Eq.(7) becomes infinite 
as U→0 is simply a consequence of ignoring alongwind diffusion (i.e., setting 
K(x) to zero in Eq.(6)) and should not be viewed as something that happens in 
nature.  Nevertheless, the history of Gaussian plume modeling is so littered with 
concern over this infinity, that regulatory modelers are urged to use a minimal U 
of about 1 m/s to avoid serious overestimation.  This subject of alongwind 
diffusion will be re-visited in detail in Chapter 8a.  
 
Combining the result of Eq.(7) plus the Eq.(4) functional forms for the y and z 
dimensions, one “constructs” the 3D Gaussian plume solution for the mixing 
ratio, φ, due to a source located at (0,0,zS) as: 
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where x distance and time are inextricably linked via the relation x ≡ U · t,  
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and where: 
 

σy
2 ≡ σy0

2 + 2 · Ky · t   and   σz
2 ≡ σz0

2 + 2 · Kz · t  (8c) 
 
are the appropriate dispersion coefficients for the constant diffusivities associated 
with molecular/Brownian diffusion. 
 
As indicated in the discussion of Eq.(4), other expressions for σy and σz are 
possible, provided that they satisfy the relation: 
 

    
U

xK
dx

d )(2 
2 ⋅

=
σ  or  )(2 

2
tK

dt
d

⋅=
σ .       (8d) 

 
However, downwind-distance or transport-time dependent diffusivities have 
traditionally created discomfort among modelers, due to the questionable causal 
mechanism.  Nevertheless, more modern understanding of turbulent spectra and 
the multiple turbulent length scales contributing to plume growth suggests that 
diffusivities proportional to the current plume size, that is, K(x) = VT · σ , where 
the proportionality constant, VT, has the dimensions of a turbulence velocity, may 
not be unreasonable.  In this case, appropriate solution dispersion coefficients 
would take the forms:  
  

 σy ≡ σy0
 + VTy · t  and  σz ≡ σz0

 + VTz · t            (8e) 
 
or equivalently,  

 
σy ≡ σy0

 + (VTy /U) · x  and  σz ≡ σz0
 + (VTz /U) · x.       (8f) 

 
Note that here the terms add linearly, rather than in quadrature as in Eq.(8c).  This 
is because the appropriate "addition rule", derived based on pseudo-transport 
times, can be shown to involve the reciprocal of the growth exponent, p, in xp.  
Thus, sigmas that grow as x½ or t½ will have a 1/p = 2, or quadrature addition rule, 
while those linear in x (i.e., p=1) will have a 1/p = 1, or linear addition rule   A yet 
wider range of dispersion coefficient forms, such as those involving various 
powers of x or t, or even more complex algebraic forms, have been used over the 
decades of Gaussian modeling, with their prime justification being that they 
provide viable predictions relative to tracer experiments or other measurements.  
Though many of these empirical dispersion coefficient forms lack a clear link to 
the diffusivity formulation of the advection-diffusion equation, their utility and 
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retained characteristic of mass conservation (i.e., with respect to integrations over 
y and z) have been sufficient to justify their use in applied modeling. 
 
It is important to note that Eq.(8a) is appropriate for the mixing ratio, φ; however, 
it is more frequently applied in its concentration form:   
 

),(),( ),,( zSy zzPyP
U
QzyxC σσ −⋅⋅=    (9) 

 
even though this expression can lead to underestimation of ground level 
concentrations for air density falling off with height, as will be discussed in a 
following subsection. 
 
It is also worth noting that Eqs.(8a) and (9) do not contain the added “reflection” 
terms associated with the presence of the ground or inversion lids.  These factors 
will be discussed later. 
 
The only other seeming mystery involved in this construction of the 3D solution 
arises if one questions why a product solution or dimensionally-factorized form 
was chosen.  This product factorization arises from the full 3D form of the 
advection-diffusion equation and the multi-dimensional solution methodology 
known as “separation of variables”. 
 
Finally, it should be noted that the form of Eq.(9) is also often simply conjectured 
or derived on intuitive grounds.  That is, consider the mass of emissions, Q·∆t, 
emitted during a time increment, ∆t, and filling a box of along-wind length U·∆t.  
Let this pollutant also uniformly fill-out the box’s transverse dimensions of Ly and 
Lz to yield a concentration, C = (Q·∆t) / [(U·∆t) · Ly · Lz], where the expression in 
brackets is recognized as simply the volume of the box.  Noting that the ∆t terms 
cancel, the resulting “box-normalized” concentration, C = Q / [U · Ly · Lz], can be 
converted to Eq.(8g), by replacing the box normalizations of 1/Ly and 1/Lz with 
the Gaussian normalization forms given by Eq.(8b).  This simple approach 
recognizes the key elements of mass conservation and flow uniformity, as well as 
the neglect of any along-wind diffusion stretching of the box’s length.  
Furthermore, this box normalization highlights the fact that for 1D flow, that is 
the flow vector  (U,0,0), there is no distinction between the average wind speed 
and the vector mean wind speed, and this average wind speed is simply the 
arithmetic mean wind, U=<ui>, where <> denotes the averaging operation, and 
not some more exotic average, such as the “harmonic mean”, U=<1/ui>-1.     
 
Box models and the box normalization principle continue to play a large role in 
pollutant dispersion modeling and will re-appear later in this chapter. 
 
2.1.3 Advection-Diffusion in Three-Dimensions 
 
For completeness, the 3D expressions of the advection-diffusion equation are: 
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where scalar variables, C, φ, ρ, S and D, vector wind field V , and tensor (or 2D 
matrix) diffusivity K may all be 3D functions of x, y, and z.  In these 3D forms, 
the symbol represents the vector 3D gradient operation, whereas the • symbol 
denotes the vector dot product operation.  At various points in this chapter and in 
the subsequent chapter on puff modeling, it may be convenient to revisit these 3D 
equations. 

∇

 
Returning again to the solutions provided by Eq.(8), we note that these results 
only represent a solution of the 3D advection-diffusion equation in the simplified 
case of V = (U, 0, 0), with U uniform in space and time, and the sparse diffusivity 
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 , containing only the ”diagonal” diffusivity elements, 

Kyy and Kzz (or in their compressed notation form, Ky and Kz).     
 
2.2 Normalization, Reflections, and Their Summation 
 
Equation (5) showed that the normalization of the Gaussian form, φ(y,t), given by 
Eq.(4a), or its Eq.(8) equivalent, P(y,σy), when integrated over all y-space from -∞ 
to +∞ yields unity.  This normalization is valid for any functional form of the σ, 
such as σ provided that σ is not itself a function of y.  However, this normalization 
becomes problematic in the z-direction, where any z < 0 implies that one is 
considering material “below ground”, where it cannot possibly be. 
 
Again, considering the Eq.(8) Gaussian z distribution function as:   
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where σz = σz(t), one notes that its integral from z=z1 to z=z2 is just: 
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where erf is the symbolic notation for the “error function”, and it is defined by its 
integral expression.  While the erf is often referred to as a “tabulated function”, it 
is no more so than the more familiar sine and cosine functions.  Like the sine 
function, the erf is an odd function, such that erf(-x) = -erf(x), so erf(0) = 0.  For 
small x, erf(x) ≈ 2·x /(π)½ , whereas for x → +∞, erf(x) → +1.  Also, there is a 
“complementary error function”, erfc(x), defined such that erfc(x) = 1 – erf(x).   
 
One may evaluate the plume mass residing “above ground” by considering the 
integration limits of z1 = 0 and z2 = ∞.  The result is just N(zS) ≡ N(zS,0,∞) or 
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This result says that N(zS) < 1 for all finite source heights zS, which falls short of 
the goal of accounting for 100% of the emitted mass.  Now, imagine a source of 
identical strength located “below ground” at a depth of z = zS.  Immediately, one 
notes that this “image source” will lead to an above ground mass, N(-zS) of  
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and that the sum of Eqs.(13a) and (13b) yields the desired result of: 
 

N(zS) + N(-zS) = ½ · ( 1 + 1) = 1.   (13c) 
 
That is, the erf terms cancel and 100% of the mass now resides above ground in 
the domain defined by the limits of z1 = 0 and z2 = ∞.   
 
In addition to this desirable mass accounting property, the distribution function 
associated with this below-ground “image source” is such that its magnitude at  
z = 0 is just equal to the magnitude of the original above-ground source, and it 
tapers off above-ground in the same manner as the original above-ground source 
tapers off below-ground.  That is, the below-ground “image source” gives rise to a 
mass distribution above ground of P(z+zS, σz) that appears to “reflect” material 
upwards that attempts to diffuse across the z = 0 boundary.   
 
This “ground reflection” term is given as: 
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This is the only other term that need be considered if the ground represents the 
only possibility for reflecting plume mass.  In this case, the original Eq.(8a) 
solution for the mixing ratio, φ, due to a source located at (0,0,zS) now becomes: 
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This is consistent with the analogue to mirror images, in that if one stands in front 
of a single mirror, there will only be a single reflection that appears to be at a 
depth “behind” the mirror equal to our distance from the front of the mirror.   
 
Just as with mirrors, the situation becomes more complicated, and infinitely so, if 
a second parallel mirror is placed behind us.  One observes an infinite series of 
reflections (Pasquill, 1974; 1976) receding ever further into the distance.     
 
An elevated thermal inversion at height z = h positioned above the source at  
z = zS constitutes such an equivalent “second parallel mirror” impediment to 
vertical diffusion, and in this case, the single terms given by Eqs.(11) and (14) are 
replaced by two infinite series (i.e., one series for the direct term involving z-zS, 
and one for the reflection term involving z+zS) of distribution functions to yield: 
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It turns out that these series can be re-expressed in terms of the Jacobi theta 
function of the third kind as: 
 

],)([
2

)(exp 
2

1  ),,( 232

2

α
σ

θ
σσπ

σ
z

S

z

S

z
zS

hzzizzhzzP ⋅±⋅
⋅⎥

⎦

⎤
⎢
⎣

⎡

⋅
±

−⋅
⋅

=±   (17b) 

 
where i ≡ (-1)½ and α ≡ exp(-2·h2/σz

2).  However, this re-expression of the infinite 
series might be of little more than academic interest except for another 
transformation, discovered in 1893 by Landsberg, which enables one to write:   
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where β ≡ exp[-(π·σz)2 / (2·h2)].  Expanding Eq.(17c) for small β, or large σz/h, 
then enables one to approximate the rightmost bracketed term in Eq.(16) to yield 
the final mixing ratio result: 
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or to yet higher accuracy via the expression: 
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where γ± ≡ cos[π · (z ± zS) / h)] .  It is clear from Eqs.(18a) and (18b) that the 
mixing ratio distribution becomes uniform in z as β → 0.   
 
Figure 1 shows the worst case percentage error experienced (i.e., generally 
achieved with receptor and source separated by the layer depth, h) using the 
various techniques considered, and one is struck by how rapidly this error varies 
with σz/h.  The “Sum 6” and “Sum 10” curves refer to using Eq.(16), with the 
sums in Eq.(17a) ranging from  j = -1 to j = +1 for 6 terms and from j = -2 to j = 
+2 for 10 terms; whereas the “Uniform Mix” assumption is just φ∝ 1/h, or 
equivalently Eq.(17c) with β = 0 to yield θ3 = 1.  The “Jacobi 1” and “Jacobi 2” 
term curves refer to refining the uniform mixing assumption via use of Eqs.(18a) 
and (18b), respectively. 
 

 
 

Figure 1.  Maximum Computational Errors for Various Gaussian Plume Methods. 
 
Various curve crossover points in Figure 1 provide strategies for building 
computational algorithms that guarantee a desired maximum error.  For example, 
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if one could tolerate errors as large as 1.12%, one could choose the “Sum 6” 
method for σz/h ≤ 1.03 and then switch over to the uniform mixing calculation for 
σz/h > 1.03.  Alternatively, one could incur the higher computational cost of the 
“Sum 10” method, transition to the uniform mixing calculation for σz/h > 1.31, 
and never suffer errors exceeding 0.042%.  Neither of these two strategies employ 
the Jacobi theta function expansions of Eq.(18).  However, using the simpler, 1-
term Jacobi expansion of Eq.(18a) for the limited interval of 0.76 ≤ σz/h ≤ 1.30 in-
between the “Sum 6” and uniform mixing calculations yields maximum 
computation errors below 0.05%.  Similarly, using the 2-term Jacobi expansion of 
Eq.(18b) for the somewhat larger interval of 0.66 ≤ σz/h ≤ 1.47 in-between the 
“Sum 6” and uniform mixing calculations yields maximum computation errors 
below 0.005%.  These algorithmic crossover points and maximum errors differ 
somewhat from those originally recommended by Yamartino (1977), as those 
earlier calculations were found to contain a programming bug that discarded some 
of the contributing “Sum 6” terms. 
 
2.3 Ground Level Concentrations and the Air Density Issue 
 
Accepting the limitations that are already-stated, one can feel relatively 
comfortable about using Eq.(15) (i.e., for h = ∞) or Eqs.(16) through (18) (i.e., for 
vertical mixing limited by a lid at z=h) to compute mixing ratios aloft and at 
ground level.  However, transitioning from these expressions for the mixing ratio 
field φ to the original and widely-used Gaussian plume formula [e.g., Eq.(1) or 
Eq.(9)] for mass-based concentrations means that one must accept that air density 
remains constant throughout space.  Yet, we clearly know that air density varies 
considerably throughout the depth of a mixed layer – especially if that mixed 
layer is several kilometers deep.  To grasp the problem at hand, imagine that the 
atmosphere is divided into two vertically stacked boxes of equal depth.  
Furthermore, suppose that the pollutant is completely diffused vertically, giving 
rise to a mixing ratio φ = 1.0 everywhere.  Now suppose that the density in the 
upper box is 0.85, but the density in the lower box has a higher value of 1.15.  
This means that the vertically-averaged density throughout this two-box 
atmosphere is <ρ>z = 1.0 , as is the vertically-averaged concentration, that is, 
<C>z =1.0.  However, as discussed previously, the actual concentration in the 
individual boxes is computed as C = ρ · φ, so that the concentration in the upper 
box is Cu = 0.85 and in the lower box is Cl = 1.15.  Nevertheless, the 2D version 
(i.e., well-mixed vertically) of the Eq.(1) Gaussian plume equation would yield Cl 
= 1.0.  Is a 15% difference worth worrying about given the known uncertainties in 
the key mixing depth determination?  Perhaps not, but it is surprising that this 
issue and its correction has been ignored for so long.      
 
A more detailed look at this problem begins by invoking the hydrostatic 
assumption for an isothermal atmosphere, such that the density falloff with height 
is given as ρ(z) = ρ0 · exp(-z/L ), where L  is the “scale height” of the atmosphere, 
known to be about 8 km.  The exact solution for mixing ratio from K-theory may  
then be written as:  
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where A is a normalization constant with A ≈ 1 very near the source, and where 
the “receptor shift distance”, δ, is given as: 
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and with choice of the + sign in the vertical term corresponding to the mirror 
image density function , ρ(z) = ρ0 · exp(+z/L ).  This “receptor shift distance”, δ, 
accommodates the variable density with no other alteration to the “method of 
images” summation.  The expression for concentration may then be written as: 
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where the normalization “constant”, A, is obtained by integrating C over all y, the 
positive z domain of (0,+h), and requiring a final integrated result of Q/U.   
 
This normalization integration is best performed by completing the square in z, 
and this leads to the more convenient crosswind-integrated form:   
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While for arbitrary h, the resulting integration in z yields a not-so-convenient 
infinite series of error function differences, the case of the unbounded atmosphere 
(i.e., h →∞) involves only the j = 0 term, and performing this integration yields 
the exact result:  
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which for small arguments for the erfc(…) expands to yield a form consistent to 
lowest order in σz/L with the approximation: 
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In the far field where σz ≥ h, we revert back to Eq.(19c) and use the series 
expansion of the Jacobi theta function1.  Integrating in z from 0 to h yields:  
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where, as before,  β ≡ exp[-(π·σz)2 / (2·h2)], ak ≡ h/(k·π·L), bk ≡ k·π·δ/h, and δ is 
given by Eq.(19b).  Now Eq.(20c) hardly represents a convenient normalization 
“constant”, but noting that in the truly well-mixed regime, where β → 0, one may 
expand the first term in Eq.(20c) to obtain: 
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Thus, one may construct a continuous normalization “constant” by combining 
Eq.(20b) for small σz with Eq.(20d), or, better yet, the first term of Eq.(20c), for 
larger σz.  This final, somewhat-optimized systhesis for A (i.e., not A-1) is: 
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1 Justifying this conclusion requires using the series expansion for the Jacobi theta function of the 

third kind and summing the two θ3 terms to yield: 
 

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛ +−⋅⋅

+⎟
⎠

⎞
⎜
⎝

⎛ −−⋅⋅

⋅+⋅
⋅
−−

= ∑
∞

1

2

)(
cos

)(
cos

22
2

)/)([exp
),(

k S

S

kS
z

h
zzk

h
zzk

h
Lzz

zP
δπ

δπ

βσ  

 
In integrating over z from 0 to h, all terms in the k sum vanish for L = ∞ (and hence δ = 0); 
however, for finite L, and trigonometric expansion to isolate the z term, the integral over 
sin(k·π·z/h) for odd k values survives, as seen in the resulting Eq.(20c).  
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Also, noting that the exp(zS/L) terms cancel when A from Eq.(20e) is inserted into 
Eq.(19c), one finds that the far-field effect of a realistic density profile on 
concentrations is effectively to multiply them by an overall factor, F,  of: 
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which is exactly the magnitude of effect envisioned at the outset.  That is, for 
well-mixed conditions, a convective mixing height of h ≈ 2.4 km, and an 
atmospheric scale height, L, of 8 km, ground-level mass concentrations should be 
increased by 15%, with smaller effects seen for shallower mixing heights.  As 
decades of regulatory modeling rests upon the presumed validity of the simpler 
Eq.(1) (i.e., with F≡1 presumed), the sub-sections which follow will not further 
consider inclusion of this atmospheric density refinement. 
 
 
3 Extending the Plume Formulation Beyond Point Sources   
 
Returning to Eq.(1) as the basic Gaussian plume equation arising from a point 
source, one naturally is led to ask how this result can be extended to sources 
having various and more complex distributions in space, such as lines and areas 
(e.g., see Turner, 1970), or in space and time, such as moving point sources.   
 
3.1 Line Source Models 
 
The straight-line source is a natural choice if one wishes to estimate impacts from 
roadway segments.  In Volume 1, Chapter 7A by Venkatram and Thé (2003), the 
equation for line source impacts under perpendicular wind flow conditions (i.e., 
where the wind direction defines the +x direction and the straight roadway defines 
the y axis), is presented for the infinite length line.  This is accomplished by 
summing the concentration increments, dC, arising from infinitesimal sources of 
length dy and source strength q·dy, where q is the line’s emission density having 
units of mass/length/time.  The total line’s direct impact is then computed as the 
integral over these infinitesimal point elements as:  
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where the integration limits, y1 and y2, represent the endpoints of the line, and  
P(z- zS, σz) and P(y,σy) are as in Eqs.(8b), except that σy and σz are typically taken 
as functions of x rather than travel time t, and are written: 
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Just as with the normalization integral of Eq.(12), one is able to express the result 
of the integration in Eq.(21a) as:  
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where erf is again the symbolic notation for the “error function”, as previously 
discussed in Section 2.2.  Note that for an infinite line, y1→ -∞ and y2→ +∞, so 
that N(y1,y2) → 1.  
 
Thus, for the typical line source at zS = 0, where the effect of adding in the ground 
reflection term is simply a factor of 2, the final result for the concentration due to 
perpendicular flow across an infinite, ground-level line is: 
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3.1.1 Arbitrary Wind Angle Solutions 
 
The great simplicity associated with the perpendicular wind is that the downwind 
distance, x, does not vary as one integrates along the line.  Hence, the values of 
the dispersion coefficients, σy and σz , remain constant along the line source and 
the integrations can be performed as shown in Eq.(21).  If instead the wind 
crosses the roadway at an angle θ away from perpendicular, the problem becomes 
far more difficult, as the σy and σz values vary with y position along the line and 
the integrals cannot be performed analytically for arbitrarily varying functions, 
σy(x' ) and σz(x' ), where x' is now the downwind distance as depicted in Figure 2 
below.  For the receptor located a perpendicular distance x = xR from the roadway, 
this receptor is now located a distance x'R, directly downwind of a point declared 
to be l = 0 along the roadway.  Thus, at other points l along the line, the 
downwind distance, x', and crosswind distance, y', will be given as: 
 

x' = x'R + l · sin(θ) =  xR / cos(θ) + l · sin(θ)     
(22) 

y' = l · cos(θ)   .     
 
These definitions make the dependence of x' and y' explicit as l varies during the 
integration along the line.  As the dispersion coefficients, σy(x') and σz(x'), are 
often defined as piecewise, power-law functions, or some other awkward 
functional form, we know that general attempts to evaluate the concentration as: 
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where l1 and l2 are the end points of the integration, are likely to require numerical 
evaluation.  Note that as “downwind” portions of the line’s emissions cannot 
contribute, the lower (or leftmost) limit l1 must be greater than (or equal to) the 
point seen shown in the drawing as l0, where 
 

  l0 = - x'R / sin(θ) = - xR / [cos(θ)·sin(θ)]    .  (23b) 
 

As mentioned, solution of Eq.(23a) must generally be performed numerically; 
however, it can be evaluated analytically if one makes the reasonable assumption 
that the key contribution to the integral comes primarily from the portion of the 
line nearly directly upwind of the receptor.  In this case, one may linearize the 
dispersion coefficient dependence on downwind distance and write: 
  
   σz(x' )  =  σz(xR'+x0)  +  iz · (x'- xR')     

 (24a) 
       σy(x' )  =  σy(xR' )  +  iy · (x'- xR')        
 
where the pseudo-distance, x0, has also been added to allow for initial mixing,  
σz0 ≡ σz(x0), at the line source due to various effects (e.g., vehicle induced mixing 
of exhaust).  As σy(x') dependence generally plays a minor role in line source 
integrations, disappearing, in fact, for the long crosswind line, we make an 
additional assumption that:   
 

 σy(x' ) = (iy / iz ) · σz(x' )     (24b) 
 
for all x'.  This has the relatively minor impact of forcing the equality condition, 
 

  σy(xR' )  = (iy / iz ) · σz(xR'+x0)     (24c) 
 
on the value of σy(xR' ) at the upwind point of maximum impact.  This then allows 
the Eq.(24a) expressions for the dispersion coefficients to be rewritten simply as:  
  

σz(x')  =   iz · [a' + l · sin(θ)] 
 (24d) 
σy(x')  =   iy · [a' + l · sin(θ)]     

 
where a' ≡ σz(xR'+x0) / iz .          
 
This then permits the integral expression of Eq.(23a) to be expressed as: 
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has dimensions of (m-1) and 
 

b ≡ ( iy / iz ) · (z – zS)          (24f) 
 

represents the appropriately scaled z-coordinate for the direct plume term.  In 
most cases, the source and receptor will be located near enough to ground level 
that b can be set to zero and the overall expression for C in Eq.(24e) can be 
multiplied by two to account for the ground reflection, but for now we will carry 
the b term and consider only the direct plume impact.  
 

 
 

Figure 2.  Roadway Coordinate System (x, y) rotated by the Angle θ relative 
to the Downwind-Crosswind System (x', y').  The receptor is located a 
perpendicular distance xR from the roadway and a distance x'R directly 
downwind of the line. 

 
The variable substitution, p ≡ [a' + l · sin(θ)]-1, such that l = ( p-1 – a') / sin(θ), 
transforms I0 in Eq.(24e) to:  
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with 
 
    b' 2≡ b2 · tan2(θ) + a' 2        (24h) 
 
and integration limits, p1 and p2, corresponding to limits l1 and l2, respectively.   
 
The subsequent change of variables from p to s via s ≡ b'·p - a'/ b' transforms the 
numerator within the exponential from the expression within the brackets […] to 
[s2 – (a'/ b' )2 + 1]; thus, “completing the square” and yielding the I0 solution:  
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and hence, the solution for the time-averaged concentration at (x,y,z) is: 
 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⋅⋅
⋅

•
⋅⋅′⋅⋅⋅

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

′⋅⋅
−⋅

=

θθ

θπ

tan2tan22
1

cos2

2
exp

 ),,(

21

22

2

yy

z

y

i
serf

i
serf

ibU

bi
bq

zyxC
      (25a) 

 
 

where 
 

 s1= b' · [a' + l1· sin(θ)]-1- a'/ b'  and  s2= b' · [a' + l2· sin(θ)]-1- a'/ b'     (25b) 
 

The final result given by Eq.(25) [i.e., with symbols a', b, and b' defined in 
Eqs.(24d, f, and h)] is not very intuitively appealing, but it becomes more 
recognizable when one considers the limit of small θ.  In this case, b' →  a' = 
σz(xR'+x0) / iz ,  s1 / [iy · tan(θ)] → - l1· cos(θ) / σy(xR'), and s2 / [iy · tan(θ)] → - l2· 
cos(θ) / σy(xR'), yielding the more familiar solution: 
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where σy(xR' ) is dictated by Eq.(24c).  For a very long line, l1 → -∞, l2 → +∞, and 
the odd property of the erf yields the condition that the expression ½ ·{…} → +1.  
Furthermore, recalling that Eq.(21d) is for a ground level line (i.e., zS = 0) and 
includes the ground reflection term as a multiplicative factor of two, leads one to 
the conclusion that Eqs.(21d) and (26) are identical except for the fact that the line 
source strength, q, in Eq.(21d) is replaced with q/cos(θ) in Eq.(26).  This means 
that as the wind shifts from the perpendicular wind flow situation (i.e., θ = 0), one 
dominant effect is that the foreshortened line is effectively “seen” by the receptor 
as being unrotated, but having an increased line-source emission density, q/cos(θ).  
However, this effect is countered by the facts that: (i) the “error function” terms 
roll off at large angles, and (ii) the centerline, upwind distance, x'R = xR /cos(θ), is 
also increasing.  For typical, urban dispersion (i.e., neutral stability), the near-field 
vertical growth of a plume is quite linear with downwind distance, and for the 
case of no initial mixing (i.e., x0 =0) in the vertical, one has simply: σz(xR'+x0) = iz 
· x'R = iz · xR /cos(θ).  Thus, the two factors of cos(θ) cancel exactly and one is left 
with little wind angle dependence in the concentrations estimated by Eq.(26).  Of 
course, Eq.(26) was developed assuming small θ; however, a numerical study of 
Eq.(25) under comparable conditions, shown in Figure 3 below, displays modest 
angular dependence in C(θ)/C(0) for angles less than about 40 to 50 degrees, with 
almost none of this arising from the erf terms.  This rather weak angular 
dependence was first described by Calder (1973) as part of his numerical 
integration studies of line source impacts. 
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Figure 3.  Angular dependence of Eq.(25).  The dotted line shows only the 
sum of error function terms, whereas the solid line depicts the full ratio 
C(θ)/C(0).  Parameter values assumed include: σZ (x0) = 1m; xR = 10m; and 
iZ = iY = 0.2. 

 
Another way to view Figure 2 is to imagine that the x'R is held fixed and the line 
source itself is rotated by θ.  For line sources that are short relative to the value of 
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the appropriate Y-diffusion coefficient, that is, L ≡ l2 - l1 << σy(xR' ), the erf( ) 
terms in Eq.(26) can be expanded using the small argument approximation,  
erf(x) ≈ 2 · x / π½. 
 
Inserting l2 = L/2 = - l1 into Eq.(26) and expanding yields the result: 
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which is recognized as the Y-centerline value of a point source concentration (i.e., 
ignoring reflections).  This is a reasonable result, because if a line source is small 
enough, it should be equivalent to a point source of strength q·L and the line’s 
orientation angle, θ, should vanish from consideration. 
 
3.1.2 Extension to Lines of Finite Width 
 
Most line sources of interest, such as highways, have a finite width, W, that may 
be significant relative to the distance, xR, of the receptor from the centerline of the 
roadway or lane.  For the case of perpendicular wind flow, finite roadway width 
may be accomodated in Eq.(25) or Eq.(26) through the use of a multiplicative 
integral-averaging correction factor, FW , defined such that: 
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where x1 = x"R - W/2, x2 = x"R + W/2, x2 - x1 =W, and the distance, x"R, includes 
all pseudo-distance effects as well (i.e., x"R = x'R + x0).  Equation (28) has the 
simple solution:  
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Now at first glance, Eq. (29a) seems to blow-up as W→ 0, but if one multiplies 
both numerator and denominator inside the log with 1/ σz(xR") and linearizes the 
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expansion of σz(xR" ± W/2 ) / σz(xR") ≈ 1 ± ε , where ε≡ ½ · iz ·W / σz(xR"), then 
Eq.(29a) becomes: 
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Equation (29b) only serves to bring the apparent problem into a clearer focus, 
which in turn demands expansion of the natural log as:  ln(1 ± ε) ≈ 1 ±  ε  –  ε2 /2 
±  ε3/3.  Provided all terms up to ε3 are retained, one arrives at the final result of: 
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where this result is strictly valid only for |ε| < 1 or | iz ·W / σz(xR") | < 2.  Equation 
(29c) is primarily useful for showing that FW does not have problems as the 
roadway width, W, shrinks to zero, but it should not be used for values of ε 
beyond about ½.  Instead, the more robust equation [i.e., Eq.(29a) or Eq.(29b)] 
should be used.  Taking a rather wide roadway width of W = 20 m, and a vertical 
turbulent intensity of iz = 0.5 over the turbulent roadway environment, a roadside 
receptor might experience a near-field plume as shallow as say σz(xR"-W/2) ≈ 1m,  
However, given the assumed level of turbulence suggests that σz(xR"+W/2) ≈ 11m 
and σz(xR") ≈ 6m, thus, yielding a value of ε ≡ 0.833.  Using these values, both 
Eqs.(29a) and (29b) yield FW = 1.44, whereas Eq.(29c) yields the smaller value of 
FW = 1.23 as the expansion of ln(1 ± ε) converges rather slowly for these larger 
values of ε. 
 
Additionally, one notes that the Eq.(29a) [or Eq.(29b)] correction factor for 
Eq.(25) or Eq.(26) might also be approximately extended to arbitrary angles, by 
replacing W with W/cos(θ). 
 
Finally, one may think that, with the ever-increasing speed of computers, one 
might just leave all these line source issues to numerical integration.  In fact, the 
AERMOD regulatory model does just this and does not presently include explicit 
formulae for line sources.  One consequence of this is that individuals running 
long-term simulations (e.g., one-year) for airports and/or highway systems 
containing many line elements continue to complain of long run times. 
 
3.1.3 The Moving Point Source Solution 
 
The source strength, q, considered in the subsections above, including Eqs.(21) 
through (27), represented a steady-state source having a linear emission density of 
q (mass/length/time).  Typically, q might be given in units of g/m/s.  Suppose 
instead, that the source consists of small point sources traveling along the line, 
such as depicted in Figure 2, at speed V0.  If there are N (#/s) sources passing a 
fixed point each second, then the separation between sources is just ∆l = V0 /N.  In 
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addition, if each of these sources emits pollutant at a rate, E (g/s), then the 
emission density is just: 
 

  q = E / ∆l  = N · E / V0    (30a) 
 
and all the equations developed above [i.e., Eqs.(21) through (27)] are still valid. 
 
Suppose instead that there is just one source traveling along this same line over 
the interval of the concentration averaging period, τ, with starting and ending 
times chosen such that the source’s concentration impact at a given receptor is 
fully realized between these start/end times.  In this case, one could compute an N 
of N = 1 / τ, so that the emission density, q, to be used in the case of a single point 
source traverse, would be: 
 
    q = E / (V0 · τ) .       (30b) 
 
While it seems odd to have the concentration averaging time appear in 
expressions for the average concentration, such will be the case when only a 
single source passes by during the duration of the concentration-averaging period. 
 
The above discussion may appear obvious to many, but now consider the case 
where the single source of strength E moves along the line l as some function of 
time.  For example, for a constant velocity source, l(t) is given as: 
 

  l(t) = l0 +  V0 · t        (31a) 
 
so that then      dl =  V0 · dt.        (31b) 
 
The integration yielding the average concentration, as given by Eq.(24e), could 
just as well have been written as:  
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has units of (s/m-2), and the time-integration, end-point limits, t1 and t2, are given 
simply as:  t1 = [l1 - l0 ] / V0 and t2 = [l2 - l0 ] / V0 .   
 
Performing the integration in time t now requires replacing all the appearances of 
l(t) in Eq.(32b) with the explicit function of t given in Eq.(31).  By now everyone 
is demanding that this madness be stopped and the change be made back to the 
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more convenient integration variable dl.  Substituting dt with dl / V0 and resetting 
the integration limits to l1 and l2 , one notes that the integral, IC , for a constant 
speed source returns to the solution form I0 of Eq.(24e), except for the appearance 
of a factor of (1/V0) inside of IC.  Of course, this constant factor can be taken 
outside the integral, so IC  = I0 / V0 , thus permitting the average concentration to 
again be expressed as:  
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where a final form for I0 is given by Eq.(24i).  Again, this solution is identical to 
simply substituting the q in Eqs.(25) through (27) with E/(V0 · τ), as discussed 
previously.  The motivation for these seemingly trivial changes of variables will 
become clear in the next subsection. 
 
3.1.4 The Accelerating Point Source Solution 
 
Let us now consider a source of strength E (g/s) that is accelerating at some 
constant acceleration rate, A(m2/s), along the line depicted in Figure 2, with A > 0 
corresponding to positive acceleration toward the right of the figure.   
 
Lest one thinks that this is merely a problem of academic interest, I note that a 
present-day automobile’s emission rate is very high during “hard” accelerations 
(i.e., as the catalytic reactor is intentionally bypassed), and jet aircraft emit most 
of their ground-level NOx during their high-thrust, rapid-acceleration takeoff 
mode. 
 
For these accelerating source cases, we redefine the relationship between l(t) and 
time to be: 
 

 l(t) = V0 · t  +  ½ ·A · t2    (34a) 
 
where V0, rather than uniform along the line as before, is now defined as the 
velocity at point l = t = 0 corresponding to the line element directly upwind.  
Now, when one changes from integration variable dt to dl, it must be noted that:  
 
dl = (V0 + A ·t )· dt = (V0

2 +2·A· l)½· dt  or  dt = (dl / V0 )·(1+ 2·A· l/ V0
2 )-½   (34b) 

 
so the accelerating source integral, IA , with units (s/m-2) becomes: 
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where, as before,  a' ≡ σz(xR'+x0) / iz . 
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Following the same transformations from l to p to s that accompanied Eqs.(24) 
and (25), one finds that the relations between l and s are just: 
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where, as before,  b ≡ ( iy / iz ) · (z – zS)  and  b' 2≡ b2 · tan2(θ) + a' 2 ,  
and this leads to the substitution:   
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Then, reversing the limits of integration, the final integral expression in s is: 
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While it does not appear that this integral is solvable analytically, the fact that 
most of the contribution to the integral occurs near l ≈ 0, or sp ≈ b'/a' - a'/b' , 
suggests detailed consideration of the factor, F, defined as: 
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where 
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One may expand F around small values of (s – sp) to obtain: 
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Noting that FC is independent of s and the linear s dependence in FS · s leads to an 
integral that can be transformed to the integral of a simple exponential, one may 
write the solution as: 
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with the concentration given as: 
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Referring back to the Eqs.(36d) and (36e) definitions of FC and FS, recalling that 
IC = I0 / V0, and examining Eq.(36f), one notes that if A = 0, one immediately 
recovers the Eq.(33) solution for the constant velocity source.  Also, one can see 
that if the wind flow is perpendicular to the line (i.e., θ = 0), IA reverts to IC, which 
simply means that one is insensitive to acceleration or deceleration under such 
perpendicular flows, and only the velocity at the upwind point on the line is 
important.  This implies that the lower speed, higher emission density, left-of-
centerline (i.e., for A > 0) portion of the line’s contribution is exactly offset by the 
higher speed, lower emission density, right-of-centerline contribution to the 
receptor concentration. 
 
The Eq.(37) solution for the concentration due to an accelerating sources is 
appropriate for a wide variety of conditions.  However, in some instances (e.g., 
when the upwind point does not lie on the physical line or when V0 = 0), an 
alternative formulation of IA must be considered, starting with a simple 
redefinition of the Eq.(34a) relationship between l(t) and time t. 
 



7B   Gaussian Plume Modeling 265 

3.2 Area Source Models 
 
Area sources are a natural extension of the line source problem.  The direct 
concentration (i.e., not counting reflection terms) from a steady-state area source 
of emission strength, qA (g/m2/s), can be written as: 
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where x and y are the along-wind and cross-wind coordinates, respectively, and 
the integration may be performed over an arbitrarily shaped area for which one is 
able to define the cross-wind limits, y1 and y2 , as a function of increasing x. 
 
Now as the y integration is purely a crosswind integration, σy remains constant, 
and Eq.(21c) may be invoked and Eq.(38) reduced to the single integration: 
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However, as both σy(x) and σz(x) are functions of x, evaluation of the Eq.(39) 
integration in x is generally accomplished via an efficient numerical integration 
method (e.g., Romberg). 
 
If one invokes the “narrow plume hypothesis” of Gifford (1959), or alternatively 
considers a very wide area source, such that the erf( ) terms saturate to 1 and -1, 
respectively, one is able to consider the simpler integral:  
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To solve this integral, one must choose an explicit form for σz(x).  Assuming the 
typical power-law form:  
 

σz(x) = a·(x + x0)b    (41a) 
 
where x0 is the pseudo-distance implicitly determined from the initial mixing, σz0,   
as σz(x0) = σz0 , one may transform to the variable s defined as:  
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After some algebra, one finds that: 
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This change of variables permits Eq.(40) to be rewritten as: 
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Eq.(42a) can be written in terms of the incomplete Gamma function (Abramowitz 
and Stegun, 1972) as: 
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While this solution may be useful, its form does not facilitate an easy grasp of the 
overall behavior of the solution.  To achieve this understanding, it is preferable to 
consider the simplified case of a surface source and receptor (i.e., z = zS = 0) and 
also add in the effect of the ground reflection.  In this case, and assuming the 
same Eq.(41b) form for σz(x), Eq.(40) reduces to the simpler expression:   
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for b ≠ 1, and for b = 1 yields: 
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A disturbing aspect of Eq.(43) is that for b ≤ 1, an infinite source (i.e., x2 → ∞) 
will cause infinite concentrations; however, infinite extent sources will also be a 
problem for b > 1, as the presence of the reflecting lid will eventually cancel out 
the seeming benefit of having b > 1.  Studies performed for various real and 
idealized cities have shown (Hanna et al., 1982) that urban concentrations can 
range from about 50 · qA / U for unstable conditions to as much as 1000 · qA / U 
under stable atmospheric conditions.  
 
3.3 Incorporation of Wind Shear 
 
Of course there are many types of wind shears, ∂ui /∂xj , where ui might represent 
any of the three wind components and xj any of the three spatial dimensions; 
however, in Gaussian plume modeling, the dominant shear that is generally 
ignored is due to the turning of the wind with height.  To first order, one may 
represent such turning with height by injecting a plume transverse velocity, v(z), 
of the form v(z) = (∂v/∂z) · (z-zS), where ∂v/∂z is taken to be a constant in space.  
Walcek (2004, 2007) has recently obtained an analytic solution to the steady-state 
diffusion equation appropriate for this problem.  The differential equation for the 
steady-state plume which Walcek solves is: 
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and the solution he obtains for a source at x = y = 0 can be written as: 
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The latter, alternative definition of s is expressed in terms of a constant rate of 
turning of the wind direction, ∂θ/∂z, with height, z. 
 
This generalization to include plume transverse wind shear is a particularly 
important and timely development, especially as data on wind shears are now 
rather widely available. 
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4 Removal Processes in Gaussian Plume Modeling   
 
Processes which can deplete the mass within a pollutant plume include: 
radioactive decay, chemical reactions, dry deposition and wet removal.  The goal 
of this section will be to present adjustment factors and altered plume 
formulations to take these various depletion mechanisms into account. 
 
Radioactive decay is accommodated quite simply by multiplying the source 
strength, Q, by the exponential factor F = exp(-t/τ), where t, the travel time is 
given as, t ≡ x/U, and τ represents the relevant decay time scale.  Such an 
approach is also appropriate for removal by first-order chemical reactions, such as 
irreversible destruction by sunlight or other transformation pathways not 
dependendent on the concentration of another trace gas depleted by the reaction.  
Higher-order chemical reactions involving the reaction of two trace species with 
one another to produce one or more different species generally requires numerical 
grid approaches, which are beyond the scope of this section. 
  
4.1 Wet Removal 
 
The removal of tropospheric pollutants by cloud systems is accomplished 
primarily through rainout or washout.  Rainout generally refers to in-cloud 
scavenging of gases or aerosols, whereas washout (or sweepout) generally refers 
to below cloud processes.  Within-cloud processes can often involve vertical 
transport and mixing of the pollutant, especially in convective systems, making a 
detailed treatment difficult within the realm of Gaussian plume modeling; 
however, below cloud scavenging, and particularly irreversible scavenging, is a 
Poisson process that also leads to exponential depletion of the plume mass below 
the cloud.  In this case, the factor k in the exponential factor, F = exp(-k·t), is 
referred to as the scavenging coefficient.  Computation of this scavenging 
coefficient is beyond the scope of this chapter, but it can entail detailed 
information on the spectrum of particle sizes and raindrop sizes for particulate 
plumes or, for gases, consideration of the Henry’s law solubility constant and, of 
course, the rainfall rate.  Some attempts are also made to deal with a fractional 
cloud/rain coverage fraction, f, by replacing the simple exponential, exp(-k·t), with 
a factor F = {1-f·[1- exp(-k·t)]}, which prevents the plume mass being depleted to 
zero by halting it at F = 1 - f .   
 
4.2 Dry Deposition Removal 
 
Removal of pollutants at the surface through dry deposition is generally modeled 
via the use of a deposition velocity, first formulated by more than fifty years ago 
by Chamberlain (1953).  This approach states that the deposited pollutant flux, Fd, 
can be computed as: 
 

Fd = vd · C0      (46) 
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where vd is the deposition velocity and C0  is the pollutant concentration at a 
reference height, typically not far above the surface.  The actual value of the 
deposition velocity depends on the reference height used, as well as many 
surface-, species-, and meteorology-dependent variables that will not be discussed 
further here.  However, once vd is determined, the amount of plume mass, dM, 
removed per unit time in a distance interval dx is given as simply: 
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where ),( refzxC  is the crosswind-integrated concentration at reference height zref . 
Substituting the Gaussian plume expression into Eq.(47a) then yields the 
following differential expression for dM:   
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where D(zref , zS, σz, h) signifies the desired vertical distribution function, such as:  
 

D(zref , zS, σz, h) = P(zref -zS, σz, h)+ P(zref +zS, σz, h)  (47c) 
 
where the couplings, such as P(zref ± zS, σz, h), are the vertical couplings defined 
in Eq.(17) at height z = zref for a plume at source height zS, reflected by both the 
ground and inversion lid at height h.   
 
The precise manner in which dM is removed from the pollutant plume gives rise 
to two, quite different plume depletion approaches. 
 
4.2.1 Source Depletion 
 
If one makes the simplifying assumption that information about the amount of  
pollutant mass, dM, removed at the surface is instantly communicated throughout 
the entire depth of the plume, then the removed amount might effectively be 
thought of as being removed from the source strength itself, that is, dM = dQ.  
This enables one to rewrite Eq.(47b) to yield the simple differential equation for 
Q(x) as: 
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This has the simple formal solution:   
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where x0 is the pseudo-distance accounting for initial mixing, and Q is the initial 
or unmodified source strength Q(0).  The integral in Eq.(49) is often evaluated 
numerically and with the reference height, zref , set to zero; however, this choice 
of zref does not really simplify the problem, as the integral is over the x' 
dependence contained within the dispersion coefficient, σz(x' ).  A typical term in 
the D sum over couplings is expressed as: 
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where 
 

       σz(x' ) = a · (x' )b        (50b) 
 
and Z represents one of the infinity of terms, Z± , j =  zref  ±  zS + 2·j·h , with j 
ranging from -∞ to +∞ [i.e., see Eq.(17a)].  Substituting Eq.(50a) into Eq.(49), 
and making use of the basic definition of the incomplete Gamma function, Γ(a,x), 
yields:  
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which ultimately leads to the solution: 
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As a has units of (m)1-b, one notes that β is dimensionless.  Also, the computation 
of the sum over coupling coefficients becomes equivalent to a product over 
exponentials (i.e., given that the summation ( ∑ ) and integration ( ∫ ) operators 
are interchangeable).  Thus, a final form for the solution is:   
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where the product expansion generally converges quite rapidly; however, as with 
the sum over reflections (Section 2.2), nearly-well-mixed plumes require more 
terms.  Actual computations of the F(Z) terms in Eq.(51c) are aided by the series 
expansion,  
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and recursion relations, such as: 
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Equation (51e) can be particularly useful, as the range ⅓ < b < 1 leads to -1 < p < 
0.  Note also that for the special case of p = 0, which arises for exponent b = 1, 
L’Hospital’s rule gives the n = 0 term in Eq.(51d) as ln(t1) - ln(t2).  
 
For downwind distances beyond the point x = xm, where the plume can be 
considered well-mixed, the x' integration in Eq.(49) can be broken up into two 
pieces.  The first piece, from x0 to xm+ x0, would be computed as indicated in 
Eq.(51a), and the part beyond x' = xm would contribute the multiplicative factor:   
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where tm = (x-xm)/U is the transport time while well-mixed, and τ = h/vd is the 
depletion time scale for a pollutant, well-mixed within a layer of depth h and 
having a deposition velocity vd.  The Eq.(52) form of source depletion is widely 
used in simple models of long-range transport. 
 
Equations (51) and (52) served as the primary approach for dealing with dry 
deposition removal for nearly two decades in some regulatory models, such as the 
German regulatory model, AUSTAL-86 (Fath and Luehring, 1986).  However, a 
major problem with this source depletion methodology is that it assumes that the 
loss of material at the surface is instantly communicated throughout the entire 
plume, and this can create a significant problem, particularly under stable 
conditions where the material loss at the surface lowers the surface concentration 
substantially (and hence subsequent deposition), as the vertical mixing rate is not 
rapid enough to replenish depleted surface concentrations with plume material 
from aloft.  Thus, surface depletion generally: 

• depletes the plume mass too quickly; 
• overpredicts the deposited mass flux, F = vd · C ; and 
• overpredicts near-surface concentrations. 

 



272  Air Quality Modeling – Vol. III 

A “poor-man’s way” of coping with this problem is to decrease the value of vd by 
increasing the atmospheric resistance term (i.e., as deposition velocities are 
generally computed as the reciprocal of a sum of resistances, one of which is the 
atmospheric resistance term).  This approach can eliminate the overdepletion of 
plume mass and lead to improved flux estimates; however, it cannot correct the 
profile of concentrations near the surface. 
 
4.2.2 Surface Depletion 
 
The surface depletion model was introduced by Horst (1977) to eliminate the 
problems associated with source depletion.  In his approach, the concentration is 
defined as the concentration due to the unabsorbed plume minus the sum of 
concentration “deficits” due to all upwind surface depletions.  These deficits, or 
“anti-matter” plumes, emitted from the surface are assumed to disperse the same 
as normal plume material; thus, yielding the integral equation: 
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where ),( refzxC  is the crosswind-integrated concentration at reference height zref , 
where deposition and “re-emission” as concentration deficits is assumed to occur. 
 
As Eq.(53) involves the unknown, crosswind-integrated concentration inside an 
integral as well as on the left-hand side, it is referred to as a Volterra integral 
equation of the second kind.  Additionally, the fact that the integral involves a 
convolution (i.e., containing both a function of x' and one of x-x') that defies 
splitting into a product of x and x' terms complicates converting the problem to a 
simple differential equation.  Equation (53) is generally solved using interative 
numerical methods that can render the process excessively time-consuming for 
many dispersion modeling applications; however, Laplace transforms also 
provide a convenient way (Yamartino, 1981) to solve Eq.(53) because of several 
convenient properties.  For example, with respect to convolution integrals, one 
finds that: 
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and with respect to integrals: 
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£  is the Laplace transform operator defined such that:  
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and £ -1 is the inverse Laplace transform operator defined as: 
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where “a” is chosen so the complex integration is performed to the right of all 
singularities.  While evaluating inverse Laplace transforms can take one into the 
intricacies of contour integration, it is useful to know that Laplace transforms and 
their inverses exist for many common functions and are tabulated in various math 
reference works and can now be found on the Web as well.   
 
Taking the Laplace transform of Eq.(53) at z = zref  yields: 
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and taking the inverse transform yields the integral equation solution: 
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where D* is now defined via the relation: 
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or via the integral equation: 
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One might question what has been accomplished in trading the integral equation, 
Eq.(53), evaluated at z = zref to give the near-surface concentration, for the 
convolution solution of Eq.(55c) plus the subsidiary integral equation for D*, 
Eq.(55e).  The advantage is that convolution integrals may be evaluated quickly 
(i.e., without the iterative means needed for integral equations), and the one 
remaining integral equation, Eq.(55e), need only be evaluated once each modeling 
hour for the specific stability class and mixing height, h, as D* is not a function of 
source height, zS. 
 
As another example of this approach, consider what happens when Eq.(53) is 
integrated over all appropriate z (i.e., from z = 0 to z = h).  In this case, Eq.(53) 
becomes: 
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Invoking the Eq.(54b) property that ),(£1),(xd£
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utilizing Eq.(55b) for ),(£ refzxC , one obtains the solution: 
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where D** is now defined via the relation: 
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or via the integral equation: 
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What is again important here is that: (i) Eq.(57c) need only be solved once for 
each modeling hour involving a unique stability class and mixing height, and (ii) 
the convolution in Eq.(57a) for the remaining plume mass is as easy to solve as 
the source depletion equation, Eq.(49), and yet yields a result free of the 
objectionable assumption of instantaneous vertical re-mixing of the deposited 
mass deficit throughout the entire plume.  
 
Despite the elegance of the surface depletion methodology and the extent to 
which its solution procedure can be simplified via the use of Laplace transforms, 
it is a methodology that has gone largely unused in regulatory dispersion models. 
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4.2.3 Surface-Corrected Source Depletion 
 
Possibly recognizing the modeling community resistance to dealing with integral 
equations, Horst (1983) developed a modified methodology to incorporate a 
corrected plume profile into the source depletion methodology.  This resulted in a 
hybrid approach which corrected for the major shortcoming of source depletion, 
but required invoking results from K-theory.  This approach was incorporated into 
the ISC-2 and ISC-3 models, which served as the primary, U.S. EPA Guideline 
model for short-range applications for many years.  
 
In this hybrid approach, Eq.(49) now becomes:   
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where D(…) is the dispersion function unmodified by deposition and P(x, zref) is 
the correction factor to the profile arising from the deposition.  The crosswind-
integrated concentration at downwind points becomes: 
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where mass conservation requires that the non-dimensional P(x, z) be normalized 
such that:  
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Horst argues that this approximation of a ground level source height is reasonable 
for downwind distances where dry deposition is significant as σz > zS at these 
distances, and thus, the actual source height assumed becomes unimportant.  This 
normalization integral is important, as it is ultimately utilized to determine 
P(x,zref). 
 
Further assuming that concentration variations close to the surface, in the constant 
flux layer, are due solely to this profile correction factor P, and not to variations 
in D(…), 1D K-theory tells us that: 
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where the atmospheric resistance between zref and z are given from K-theory as:   
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Note that the Eq.(58e) expression in terms of plume sigmas relies on the point-
source, K-theory relation, σz

2(x) = 2 ·K·(x/U), for the second moment, and is 
attributable is to Briggs' formulas for σz (Gifford, 1976).  Nevertheless, this form 
for the resistance is peculiar in that σz(x) is usually not an explicit function of z; 
however, it can be seen to be an implicit function of z through the first moment 
relation, zzz σπ ⋅==′ /2  .  Thus, before the integral on the right side of 
Eq.(58e) is evaluated, one must first replace all terms in x with its equivalent in 
terms of σz, and then replace σz with the first-moment relation in z'.  As a check, 
one should note that the simple, stable dispersion expression, xUKz ⋅= /2σ , 
results in the resistance, R(z, zref ) = (z- zref ) / K.  The ISC3 User’s Guide (EPA, 
1995) presents results for these resistance integrals, R(z, zd), and the resulting 
profile functions, P(x, zref), for the unstable through stable dispersion functions 
used within ISC3.  A typical result for the depletion factor, P(x, zref), and the 
profile correction factor, [1 + vd · R(z, zref )],  is given in Figure 4. 
 
It should also be noted that Eq.(58d) represents a simplification applicable to the 
case of negligible gravitational settling velocity, vg.  The more general expression 
is:  
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However, inserting this expression into the normalization integral [i.e., the right 
hand side of Eq.(58c)] essentially guarantees that a numerical integration must be 
performed, whereas the normalization integration associated with the simpler 
Eq.(58d) can often be performed analytically.  
 
Horst has shown that use of the methodology prescribed by Eqs.(58a) through 
(58e) leads to suspended mass, Q(x)/Q, and surface concentration estimates that 
are generally within a few percent of the reference surface depletion values, and 
thus, far more accurate than source depletion approximated values, particularly 
for the stable dispersion cases.   
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Figure 4.  A typical for the Depletion factor, P(x, zref), and the associated 
Profile Correction factor, [1 + vd · R(z, zref )].  Source: Fig. 1-7, U.S. EPA 
(1995). 

 
4.2.4 Gravitational Settling and the Tilted Plume 

 
Particles that are bigger than several microns are known to undergo dry deposition 
enhanced by their gravitational settling velocity, vg.  The terminal velocity of a 
particle of given physical (or Stokes) diameter, dp, and density, ρ, is determined  
from the balance of gravitational and viscous drag forces to be: 
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where g is the gravitational acceleration, ρA is the ambient (air) density, CS is the 
Cunningham slip factor (which is approximately 1.0 for particles larger than one 
micron), and µ is the viscosity of air.  While this gravitational velocity is only 
about 0.03 cm/s for a unit density particle (i.e., ρ  = 1 g/cc) of diameter 3µ, it 
increases with the square of particle diameter, such that a 10µ particle would 
settle at about 0.3 cm/s, and a more typical density 10µ particle might settle at 
about 1.0 cm/s.  These velocities seem quite small relative to turbulent velocity 
scales, yet their persistent effect makes them hard to ignore when modeling the 
transport of particulate plumes over travel times of an hour or more.   
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Perhaps the simplest “fix” to plume modeling that one might imagine is correcting 
the effective source height zS for such gravitational sinking via the “tilted” plume.  
That is, computing a corrected source height zS' defined as: 
 

zS' = zS - vg·t     (60) 
 

where t is the downwind travel time, t = x/U.  This simple idea works well until 
the effective source height reaches the ground and then effectively has the 
primary plume digging into the ground, and worse, has the ground reflection term 
simulating a plume climbing up from the ground at upward velocity, vg .  The 
simplest solution to this problem is to simply freeze the plume centerline at 
ground level once it reaches the ground, which is the solution that has been 
incorporated into many dispersion models.  However, this approach erroneously 
suggests that gravity stops acting on these particles once the plume centerline 
reaches ground level.  In the ISC-3 model, this subsequent settling has been 
incorporated as a correction to the plume’s vertical dispersion coefficient.  For 
example, if the plume’s uncorrected plume spread is given as σz(x) and zS' = 0, 
then the mean plume centerline height <z> of this plume is just (2/π)1/2 · σz(x), so 
one can compute the gravitationally corrected dispersion rate as:   
 

σz
'(x) = σz(x) - (π/2)1/2 · vg·(t- tT )   (61) 

 
subject to the additional constraint that σz

'(x) remains positive. 
   
4.2.5 Deposition in K-Theory 

 
K-theory continues to be used in numerical grid models.  Exploiting the linkage 
between K-theory solutions and plume models dates back to the early days of 
modeling by Csanady (1955) and Smith (1962).  While the substitution   
 

σz
2(x) =2·K·(x/U)    (62a) 

 
is strictly valid only for stable conditions, Rao (1981) has exploited the K-theory 
solution for depositing particles and developed a solution for the crosswind-
integrated concentration as:   
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where 

 
    V = vd – vg/2     (62c) 
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and 
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For non-settling particles (i.e., vg = 0 and V = vd), Eq.(62) depletes only the image 
source, as one might intuitively expect from the notion that deposition is 
equivalent to imperfect reflection of matter from the surface, as was suggested 
quite early by Csanady (1955) and later by Overcamp (1976).  While Eq.(62b) 
does not conserve mass for the general case where σz does not obey Eq.(62a), Rao 
forces the proper analytic normalization by integrating Eq.(62b) over z.  Horst 
(1984) shows that Rao’s solution is always intermediate in accuracy between the 
source depletion and surface depletion solutions.  That is, it is superior to source 
depletion, but not as accurate as Horst’s surface-corrected source depletion and 
the reference surface depletion solution. 
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